
MQEV

IBM MQ Event Processor
User Guide

Version 9.4.1

3rd March 2025

MQGem Software Limited

www.mqgem.com

support@mqgem.com

http://www.mqgem.com/
mailto:support@mqgem.com

Notices
The following paragraph does not apply in any country where such provisions are inconsistent with local law.

MQGEM SOFTWARE LIMITED PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

While every effort has been made to ensure the accuracy of the information contained in this document no
guarantees can be made. Similarly the applicability of information in this document may well depend on the
customers operating environment. If you feel that that there are inaccuracies in this document please raise your
concerns by sending an email to support@mqgem.com.

MQGem Software Limited may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

The following terms are trademarks of the International Business Machines Corporation in the United States and/or
other countries:

IBM
WebSphere MQ
MVS
z/OS

The following terms are trademarks of the Microsoft Corporation in the United States and/or other countries:
Windows

The following terms are trademarks of the Open Group:
Unix

Twentieth Edition, March 2025
This edition applies to Version 9.4.1 of IBM MQ Event Processor and to all subsequent releases and modifications
until otherwise indicated in new editions.

(c) Copyright MQGem Software Limited 2018,2025. All rights reserved.

mailto:support@mqgem.com

Table of Contents
 Main changes from previous version..1
1 Introduction..3

1.1 Uses..5
1.2 Concepts...6

1.2.1 Event Queues..7
1.2.2 Command Queue..7
1.2.3 Persistence Layer..7
1.2.4 Compression...8
1.2.5 Event Storm Detection..9
1.2.6 Script Processor ...9

1.3 Feedback...9
2 Licensing..10

2.1 Licence File Location...10
2.1.1 When running MQEV in z/OS UNIX ..11
2.1.2 When running MQEV interactively in TSO ...11
2.1.3 When running MQEV from JCL...11

2.2 Multiple licences...11
2.3 Licence Renewal...11
2.4 Changing your licence file..12

3 Getting Started..13
3.1 Installation..13

3.1.1 Windows...13
3.1.2 Unix..13
3.1.3 z/OS..14
3.1.4 MQEV Administration..14

3.2 Upgrade..15
3.3 Configuration..16

3.3.1 Queues ...16
3.3.2 Script functions...16
3.3.3 Events...17
3.3.4 Statistics..17
3.3.5 Accounting..17

3.4 Running the program..18
3.5 Displaying MQEV in a command line (MQSCX)..19
3.6 Displaying MQEV in a GUI (MO71)..28
3.7 Testing with other events..31

4 Parameters..32
5 Streams...36

5.1 Directing events to a stream..37
5.2 Directing accounting and statistics messages..37
5.3 Auto-generated streams...38

6 Aggregation..39
6.1 Purpose...39
6.2 Concept...39

6.2.1 Interval..39
6.2.2 'Same thing'...40
6.2.3 Combination...40

6.3 Multiple Streams...41
6.4 Displaying...42
6.5 Emitters...42
6.6 Operation..43

6.6.1 Absorption..43
6.6.2 Storage..43

7 Collation...44
7.1 TITLE and TITLEIDX..45
7.2 Types...46
7.3 Use examples..47

8 Emitters...48
8.1 Stream configuration...48
8.2 Emitter Code page..48
8.3 Emitter Formats..49

8.3.1 CSV..49
8.3.2 JSON...49
8.3.3 NDJSON...49
8.3.4 MQSC...49

8.4 Emitter File Name ..50
8.4.1 Emitter Filename Inserts...50

8.5 GetPost Application..51
8.5.1 Parameters..51
8.5.2 Error processing..52
8.5.3 Transactions..52
8.5.4 Using Triggering...52

9 Logging...54
10 Where Clause()...55

10.1.1 Attribute presence...57
11 Running MQEV with your Queue Manager..58

11.1 Running MQEV as an IBM MQ Service (Distributed platforms)...58
11.1.1 When running on the event Queue Manager...58
11.1.2 When running using a State Queue Manager..58

11.2 Running MQEV in batch (z/OS only)...59
11.2.1 DD name MQGEML..59
11.2.2 DD name MQEVMQX...59
11.2.3 DD name MQEVLOG..59

11.3 Running MQEV as a Started Task (z/OS only)...60
11.4 Stopping MQEV using the MVS STOP command..60

12 Returned Interval Times..61
12.1 SUM(NONE)..61
12.2 SUM(something) with no INTVL...61
12.3 SUM(something) and INTVL(something)..62

12.3.1 Graphing...62
13 Command Reference...63

13.1 Programmable command format commands and responses..64
13.2 ADD EVALERT..65

13.2.1 Syntax diagram for ADD EVALERT..65
13.2.2 Parameter descriptions for ADD EVALERT...65

13.3 ADD EVQ...69
13.3.1 Syntax diagram for ADD EVQ...69
13.3.2 Parameter descriptions for ADD EVQ..69

13.4 ALTER EV..71
13.4.1 Syntax diagram for ALTER EV..71
13.4.2 Parameter descriptions for ALTER EV...71

13.5 ALTER EVEMIT..75
13.5.1 Syntax diagram for ALTER EVEMIT...75
13.5.2 Parameter descriptions for ALTER EVEMIT..75

13.6 ALTER EVQ...79
13.6.1 Syntax diagram for ALTER EVQ...79
13.6.2 Parameter descriptions for ALTER EVQ..79

13.7 ALTER EVSTREAM..81
13.7.1 Syntax diagram for ALTER EVSTREAM..81
13.7.2 Parameter descriptions for ALTER EVSTREAM...81

13.8 COPY EVSTRMST..84
13.8.1 Syntax diagram for COPY EVSTRMST...84
13.8.2 Parameter descriptions for ALTER EVSTREAM...84

13.9 DEFINE EVEMIT..86
13.9.1 Syntax diagram for DEFINE EVEMIT...86
13.9.2 Parameter descriptions for DEFINE EVEMIT..86

13.10 DEFINE EVSTREAM..90
13.10.1 Syntax diagram for DEFINE EVSTREAM...90
13.10.2 Parameter descriptions for DEFINE EVSTREAM...90

13.11 DELETE EVEMIT...93
13.11.1 Syntax diagram for DELETE EVEMIT..93
13.11.2 Parameter descriptions for DELETE EVEMIT...93

13.12 DELETE EVSTREAM...94
13.12.1 Syntax diagram for DELETE EVSTREAM..94
13.12.2 Parameter descriptions for DELETE EVSTREAM...94

13.13 DISPLAY ACCTMQI...95
13.13.1 Syntax diagram for DISPLAY ACCTMQI..95
13.13.2 Parameter descriptions for DISPLAY ACCTMQI...96

13.14 DISPLAY ACCTQ..105
13.14.1 Syntax diagram for DISPLAY ACCTQ...105
13.14.2 Parameter descriptions for DISPLAY ACCTQ...106

13.15 DISPLAY EV..115
13.15.1 Syntax diagram for DISPLAY EV...115
13.15.2 Parameter descriptions for DISPLAY EV...115

13.16 DISPLAY EVALERT..118
13.16.1 Syntax diagram for DISPLAY EVALERT...118
13.16.2 Parameter descriptions for DISPLAY EVALERT...118

13.17 DISPLAY EVEMIT..121
13.17.1 Syntax diagram for DISPLAY EVEMIT...121
13.17.2 Parameter descriptions for DISPLAY EVEMIT..121

13.18 DISPLAY EVENTS..123
13.18.1 Syntax diagram for DISPLAY EVENTS...123
13.18.2 Parameter descriptions for DISPLAY EVENTS...124

13.19 DISPLAY EVQ...129
13.19.1 Syntax diagram for DISPLAY EVQ..129
13.19.2 Parameter descriptions for DISPLAY EVQ..129

13.20 DISPLAY EVQMGR..131
13.20.1 Syntax diagram for DISPLAY EVQMGR...131
13.20.2 Parameter descriptions for DISPLAY EVQMGR...131

13.21 DISPLAY EVSTREAM..133
13.21.1 Syntax diagram for DISPLAY EVSTREAM..133
13.21.2 Parameter descriptions for DISPLAY EVSTREAM...133

13.22 DISPLAY EVSTRMST..135
13.22.1 Syntax diagram for DISPLAY EVSTRMST...135
13.22.2 Parameter descriptions for DISPLAY EVSTRMST..135

13.23 DISPLAY STATCHL..137
13.23.1 Syntax diagram for DISPLAY STATCHL...137
13.23.2 Parameter descriptions for DISPLAY STATCHL..137

13.24 DISPLAY STATMQI..144
13.24.1 Syntax diagram for DISPLAY STATMQI...144
13.24.2 Parameter descriptions for DISPLAY STATMQI..144

13.25 DISPLAY STATQ...154
13.25.1 Syntax diagram for DISPLAY STATQ..154
13.25.2 Parameter descriptions for DISPLAY STATQ...154

13.26 PURGE EVSTRMST..162
13.26.1 Syntax diagram for PURGE EVSTRMST..162
13.26.2 Parameter descriptions for PURGE EVSTRMST...162

13.27 REMOVE EVALERT...164
13.27.1 Syntax diagram for REMOVE EVALERT..164
13.27.2 Parameter descriptions for REMOVE EVALERT...164

13.28 REMOVE EVQ..166
13.28.1 Syntax diagram for REMOVE EVQ...166
13.28.2 Parameter descriptions for REMOVE EVQ..166

13.29 REMOVE EVQMGR...167
13.29.1 Syntax diagram for DISPLAY EVQMGR...167

13.29.2 Parameter descriptions for REMOVE EVQMGR...167
13.30 RENAME EVSTREAM...168

13.30.1 Syntax diagram for RENAME EVSTREAM..168
13.30.2 Parameter descriptions for RENAME EVSTREAM...168

13.31 RESET EV..170
13.31.1 Syntax diagram for RESET EV...170
13.31.2 Parameter descriptions for RESET EV...170

13.32 RESUME EVQ...170
13.32.1 Syntax diagram for RESUME EVQ..170
13.32.2 Parameter descriptions for RESUME EVQ...170

13.33 STOP EV..171
13.33.1 Syntax diagram for STOP EV...171
13.33.2 Parameter descriptions for STOP EV..171

13.34 SUSPEND EVQ...171
13.34.1 Syntax diagram for SUSPEND EVQ..171
13.34.2 Parameter descriptions for SUSPEND EVQ...171

14 Alerts...172
14.1 Alert Definition ..172
14.2 Alert Uses...172

14.2.1 User Alert..173
14.2.2 User Reminder..173
14.2.3 Script Reminder..173

14.3 Alert Retention..175
14.4 Maximum Number of Alerts ..175
14.5 Alert Publication...176

14.5.1 Publication Message Format...176
15 Event Storms...177

15.1 Storm Alert..177
16 MQEV Scripting...178

16.1 Invoking other programs from your script..179
16.1.1 Synchronously..179
16.1.2 Asynchronously..179

17 Script Control Language...180
17.1 Getting started with the control language..180
17.2 Variables...182

17.2.1 Association variables..182
17.2.2 User Variables...183
17.2.3 Arrays...184
17.2.4 System Variables...186
17.2.5 Response Variables...187

17.3 Variable Scope and Stack Frames...189
17.4 Expressions...191

17.4.1 Data Types..191
17.4.2 Coercion..191
17.4.3 String Concatenation...193

17.5 Inserting code fragments...193
17.6 Substitution commands...194

17.6.1 Functions..194
17.7 General syntax..195

17.7.1 Continuation...195
17.7.2 Comments...195

17.8 Statements...195
17.8.1 break...195
17.8.2 continue..195
17.8.3 foreach(....) clause...196
17.8.4 foritem(....) clause...196
17.8.5 fprint statement...197
17.8.6 goto...197
17.8.7 if(....) clause..198

17.8.8 label..198
17.8.9 leave..199
17.8.10 print statement...199
17.8.11 return...200
17.8.12 var...200
17.8.13 wait() statement...201
17.8.14 while(...) clause...201

17.9 Functions..202
17.9.1 Function Basics...202
17.9.2 Function Invocation..203
17.9.3 Dynamic Execution...205
17.9.4 Comments...206

18 Debugging...207
18.1 Debugger..207

18.1.1 <Enter>...208
18.1.2 print...208
18.1.3 eval...209
18.1.4 Assignment...209
18.1.5 list (short-form 'l')...210
18.1.6 llist (short-form 'll')...210
18.1.7 where..210
18.1.8 Breakpoints...211
18.1.9 end..211
18.1.10 run...211
18.1.11 runout..212
18.1.12 sf...212
18.1.13 Help (short-form ?)...213
18.1.14 Command alteration..213

19 Data Management...214
20 Operational Characteristics...216

20.1 Message Consolidation...216
20.2 Message Retention..217
20.3 Time zones..217
20.4 Original Event Data..218

20.4.1 Daisy chaining..218
20.5 IBM MQ Configuration ...218

21 Security...219
21.1 Authorities needed by the MQEV program...219

21.1.1 Example security commands for Distributed Platforms..219
21.1.2 Example security commands for z/OS (using RACF)...219

21.2 Authorities needed by users of MQEV..220
21.2.1 Example security commands for Distributed Platforms ...220
21.2.2 Example security commands for z/OS (using RACF)...220

22 Trouble Shooting...221
22.1 Frequently Asked Questions...221

22.1.1 My MQEV runs in the background, how do I know what it's doing?..221
22.1.2 Why does MQEV not delete all my log files?...221
22.1.3 Why does MQSCX complain that my commands are invalid?...221
22.1.4 Why do the MQEV menus not appear in MO71?..221
22.1.5 Why does my alert disappear?..221
22.1.6 Why can't I see the events I know have been generated?..222
22.1.7 Why don't my scripts work?..222
22.1.8 Why does MQEV complain that there are functions missing from my script?..................................222
22.1.9 Why does my MQEV on z/OS complain that no licence is found...222
22.1.10 Why can't I view my MQEV on z/OS log files in their PDSE while MQEV is running..................222
22.1.11 Why doesn't my script wait until my system call is finished before continuing..............................222
22.1.12 What does “Responses limited as requested” mean ?..223
22.1.13 What does “Source records limited as requested” mean ?...223
22.1.14 I saw “IBM MQ QMgr is generating bad data in STATCHL messages” in my MQEV log............223

22.2 Support..224
23 Changes made in previous versions..225

23.1 Changes made in Version 9.4.0...225
23.2 Changes made in Version 9.3.0...225
23.3 Changes made in Version 9.2.2...225
23.4 Changes made in Version 9.2.1...226
23.5 Changes made in Version 9.2.0...226

24 Migration from a previous version..227
24.1 Migrating from a version prior to Version 9.4.1..227
24.2 Migrating from a version prior to Version 9.2.2..227

Appendix A. Expression Operators..229
Appendix B. Expression Functions..230
Appendix C. Variable Names ..234
Appendix D. Event Reasons..235

MQEV User Guide – Version 9.4.1

Main changes from previous version

Unless otherwise stated the behaviour of the previous version should be maintained and, if all goes well, enhanced.
While every effort is made to try and ensure that there are as few bugs as possible it would be surprising if some
problems didn’t leak out.

When installing a new version of MQEV we would always recommend that users...

✔ take a backup of their data queue(s) using something like DMPMQMSG or QLOAD. See 3.2 Upgrade on page 15.

✔ keep their previous version of MQEV handy so that they can revert to it if a bug is found.

Needless to say, please report any incompatibilities to us if they are found and we will do our best to provide a fix.

This release of MQEV, more so than any previous one, has necessitated significant changes to the internal operation.
This is to accommodate the Aggregation feature. The data now needs to be both stored, hardened and retrieved from two
different places. We have, naturally, made great efforts to ensure that externally MQEV behaves as it always did do.
However, due to the nature of the product, with it's almost infinite variability, it is very difficult to cover every eventuality
in regression testing. It is therefore strongly recommended that users backup their data queues before installing the new
version and that they do some sandbox testing before immediately putting the new version into production. If you do
discover a problem then please don't hesitate to let us know and we will do our best to resolve the situation.

The following changes have been made in this version:

1. Aggregating of accounting and statistics
MQEV now allows you to configure a stream to aggregate multiple records into a single record to reduce
over-head. For more information please see Chapter 6:Aggregation described on page 39.

2. It is now possible to collate response to Accounting and Statistics display into time slots
For more information please see Chapter 7: Collation on page 44.

3. Event and Accounting and Statistics data can now be put to multiple streams
Rather than just returning a stream name in _stream you can now return a comma separated list of names.

4. DISPLAY STATQ, STATCHL and ACCTQ can use SUM() PREFIX,PREFIX2 and SUFFIX
It is now possible to ask MQEV to group responses by first, second and last portion of the object name.

5. MQEV can now cache the response to a successful security check
Please see the definition of AUTHDURN in the ALTER EV command.

6. You can now set a default backout threshold, to be used if the event queue has a zero threshold
Please see the definition of DEFBOTHR in the ALTER EV command.

7. New emitter filename inserts %u and %U
For more information please see Chapter:8.4.1:Emitter Filename Inserts on page 50

8. TO and FROM times can now use 17:15 format as well as 17.15
For example DISPLAY ACCMQI(*) FROM(17:15)

9. New parameters -q and -p allowing you control the reply queue used.
By default MQEV will use SYSTEM.DEFAULT.MODEL.QUEUE. You can change this if required using
these parameters.

10. New COPY EVSTRMST command
Please see COPY EVSTRMST on page 84 for a full description

11. New ACCTSELF attribute of EV object
New attribute controlling whether MQEV should store Accounting and Statistics data about itself.

Page 1

MQEV User Guide – Version 9.4.1

12. New NDJSON emitter format
This format lends itself to having downstream programs reading the data as MQEV is writing. For more
information please see 'NDJSON' on page 49.

13. Added the concept of implicit display to stream.
If the user issues a command such as DIS ACCTQ(*) there is no requirement to explicit mention the
streams that the data should be retrieved from. The user can be explicit but most of the time the stream
name should be implicit. To that end it is now possible to identify which streams should be used if not
specified directly. This can be very useful when using Aggregation and you have the data existing on more
than one stream.

14. IBM MQ Version 942 Command Level Support

Page 2

MQEV User Guide – Version 9.4.1

1 Introduction
MQEV is a program which will receive, store and process three types of IBM MQ messages.

1. MQ Event Messages
Event messages are IBM MQ's way of telling the installation that something 'of note' has happened. This
could range from something fairly innocuous such as channel starting to something fairly serious such as a
queue filling up.

2. MQ Statistics Messages
Statistics messages are messages which the MQ Queue Manager will generate on a regular interval to
notify the user of the levels of activity. For example, how many messages have been put or got to a queue.

3. MQ Accounting Messages
Accounting messages are fairly similar to statistics messages however they are from the point of view of
the application. So, it gives information such has how many MQI calls, and which type, have been issued
by each application in the system. Again these messages output at regular intervals.

These three types of messages contain very different message content however they are all, to some extent,
reporting on 'events' within the MQ Queue Manager. This manual may refer to them all collectively therefore as
just 'event' messages coming from 'event' queues. In cases where we are particularly only talking about actual MQ
Event messages then this will be made clear. In general though the mechanisms and features provided by MQEV
apply to all three types of messages.

Notifying the user of activities within the MQ system via an MQ Message is clearly a natural fit for the MQ
environment. The Queue Manager puts these messages to a selection of well known queues such as:

• SYSTEM.ADMIN.COMMAND.EVENT
• SYSTEM.ADMIN.STATISTICS.QUEUE
• SYSTEM.ADMIN.ACCOUNTING.QUEUE
• SYSTEM.ADMIN.CONFIG.EVENT
• etc...

By changing these queue definitions these messages can, if required, be routed round the MQ network or even even
published to multiple recipients. However, these messages are not without their disadvantages; these disadvantages
include:

• No built-in tools
Perhaps the major disadvantage of these messages is that IBM MQ does not provide the user with any way
to process or respond to these messages. This is means that in many MQ installations these messages are
either ignored or their generation is switched off completely. This is a huge waste of potentially valuable
information. All three types of messages give important information which can give clues as to the health
of your MQ environment as well providing critical information should things go wrong.

• Readability
All of these messages are in a message format known as Programmable Command Format (PCF). PCF
messages are messages which are formatted in a way that makes them fairly easy and efficient to process in
a program but are not very human readable. Of course there are a number of programs out there which will
format these message such as our MO71 program. However, just looking at the messages on a queue and
trying to find a particular field within that message is very time consuming, laborious and error prone.

• Completeness
A common event which an Administrator might be interested in is when an object changed and what was
changed. We are all familiar with the feeling that when something goes wrong you want to know “what
changed, and who did it ?”. Well MQ tells you when something changes via a Configuration Event.
Unfortunately it gives you two of them; a before image of the object configuration and an after image of
the object configuration. So, to see what happened you have to compare the fields in two different
messages and there may be dozens of fields. To make matters worse these two messages may not even be
consecutive in the queue!

Page 3

MQEV User Guide – Version 9.4.1

• Searchability
Of course what you are often interested in is messages that belong to a particular object or group of objects.
Even if you can read the messages it can be very time consuming to sift through the thousands of messages
on your event queue looking for the ones that pertain to a particular object.

• Message Size
The PCF message format is not very efficient when it comes to message size. String parameters are often
padded with blanks to their maximum size. Booleans which can, by their very nature contain only two
possible values, are stored in structures that take 16 bytes.

• Expiration
These messages will not expire. This is good from the point of view that your queues contains a useful
history of what happened. However, sooner or later an event becomes uninteresting. Is it really useful to
know that a channel started or stopped six months ago? Worse still is that when your queue fills up with
these old, uninteresting messages it stops any new event messages being written. What is needed is a way
to age out event messages.

• Event Storms
It is possible for a queue manager to get a storm of events. Consider, for example, a rogue application in an
infinite loop trying (unsuccessfully) to connect to a queue manager. This can generate thousand of 'not
authorized' events in a very short space of time. This means that your event queue can fill, preventing any
other events from being raised, in just a few seconds.

• Actionability
Of course in many instances what you actually want is 'an action' to automatically happen when an event
arrives. The action performed could be anything such as sending an email, issuing an MQ command,
raising an alert, issuing an OS command or writing to a log file. Equally whether you want the action
performed will depend on many factors such as event type, object name, frequency, time of day. This is not
possible to do with just standard MQ facilities.

What MQEV does is greatly alleviate these disadvantages. MQEV provides:

• An easy way to store a history of events, statistics and accounting information1

• Simple configuration of how long the data should be stored for

• Fast search and display of all stored data

• Consolidation and summarising of change events

• Aggregation of accounting and statistics data

• Fast totalling of statistics and accounting data

• Ability to easily write scripts to process and action events as they are issued

• Ability to easily write scripts to mine the events and statistics data

• Administration and display of MQEV data either by command line or a GUI

◦ Command line provided by MQSCX2

The version of MQSCX should be V9.1.0 or later.

◦ GUI interface integrated into MO713

The version of MO71 should be V9.1.4 or later.

1 Without the complication and expense of a database
2 No separate MQSCX licence is required. An MQEV licence is sufficient to issue MQEV MQSCX commands.
3 No separate MO71 licence is required. An MQEV licence is sufficient to issue MQEV commands from MO71.

Page 4

MQEV User Guide – Version 9.4.1

1.1 Uses
Most people seem to instantly recognise the advantages of storing and processing events but the statistics and
accounting messages are a little less clear. Many people think that these messages would only really be useful for
companies where internal departments charge depending on MQ resource usage. Well, clearly this is one use case
but what else can we do with these messages? What questions might we be able to answer if we had a history of
such messages ?

Well, have you ever asked yourself any of the following questions:

• Did anything unusual happen with my Queue Manager over the weekend ?

• Is queue or channel XYZ still being used ? ...and, if so, by who/what ?

• What type of MQ clients are using my Queue Manager ? JMS ? C ? Java ? C++ ?

• What version of MQ client are connecting to my Queue Manager ? Are any of the clients old and need
updating ?

• What channels are being used and what is the relative split of persistent message traffic ?

• How efficient are my channels ? What is the average batch size in use over time ?

• Are my channel exits efficient ? What time is being spent in them ?

• How is my network performing ? How does my network round-trip time vary over time ?

• How does the activity/depth of queue X vary over the day ? What are my peak traffic times ?

• How does the activity/depth of queue X vary over the last 3 months ? Am I seeing an increase of traffic ?
Will my MQ infrastructure be able to cope with future demands ?

• Are my channels having to ever retry their puts to deliver messages ?

• Are any of my applications misbehaving ? Do we see excessive amounts of failed MQI calls such as
MQGETs, short connections, or are they opening/closing the queue for each message ?

• How is my processing speed varying over time ? How long are messages languishing on queues ? Am I
delivering on my Service Level Agreements (SLA) ?

• Are my applications publishing to topics with no subscribers ?

• What is the maximum depth my queue has reached during a particular period ?

Of course there are many more questions which can be answered. For example, many installations who do monitor
the accounting and statistics messages use it for capacity planning. Being able to see the current utilisation of MQ
resources and see trends over time can prevent nasty surprises in the future.

In addition the information can be extremely useful to diagnose system problems. eg. Channels get backed up and
you want to understand where this storm of messages came from.

Not only can you issue queries into MQEV to discover what happened during a particular period but you can
actually monitor for situations real-time. Suppose you want to be told if the depth of a queue exceeds a particular
value or the network response time drops or an application issues more than 100 failed MQI calls in any one
interval. You can easily write a script to check for these conditions and raise some form of alert if they are detected.
This alert could be in the form of an object which can be queried or you could actually send an email. In fact since
you can invoke a program there is no limit to type of alert you can configure.

Page 5

MQEV User Guide – Version 9.4.1

1.2 Concepts
Later on in this document we describe in a little more detail how MQEV works but for now we shall just consider
the basic concepts. In essence MQEV is just an MQ application which consumes MQ event, statistics and
accounting messages and writes them to a storage queue. However, naturally there is more to it than that. We could
view MQEV pictorially like this:

It is recommended that wherever possible the Persistence Queue is on the same machine that MQEV itself is
running. This is because, over time, the persistence queue could contain a fair amount of data and you do not wish
this data to have to be fetched across a client link each time MQEV starts. However, that being said you can run
MQEV in three modes.

1. All queues are local to the running instance of MQEV

2. The persistence queue is local to MQEV but the event queues are access across a client link

3. All queues are accessed across a client link

As we said before though, we recommend you run in one of the first two configurations.

If you are running in the second mode then MQEV will, necessarily, connect to two different Queue Managers.
The Queue Manger you are monitoring and the Queue Manager where you choose to put the persistence queue. In
such a case, the persistence Queue Manager is referred to as the State Queue Manager since it maintains the
MQEV state. Ideally the state Queue Manager is dedicated to the purpose and does nothing other than store
MQEV persistence data.

We'll now introduce the various aspects of the concept diagram.

Page 6

MQEV User Guide – Version 9.4.1

1.2.1 Event Queues
MQEV can read from any number of event queues. By default it will read from the well known set of event
queues, and accounting and statistics queues. These are:

• SYSTEM.ADMIN.CHANNEL.EVENT
• SYSTEM.ADMIN.COMMAND.EVENT
• SYSTEM.ADMIN.CONFIG.EVENT
• SYSTEM.ADMIN.LOGGER.EVENT4

• SYSTEM.ADMIN.PERFM.EVENT
• SYSTEM.ADMIN.PUBSUB.EVENT4

• SYSTEM.ADMIN.QMGR.EVENT
• SYSTEM.ADMIN.ACCOUNTING.QUEUE4

• SYSTEM.ADMIN.STATISTICS.QUEUE4

These are the various queues to which IBM MQ will write event, statistics and accounting messages. Note however
that just because a queue exists does not necessarily mean that any event messages will be written to it. IBM MQ
allows a fair amount of choice about which objects will generate events and what types of events. You need to
ensure that the queue manager (and possibly the object definition) has enabled the event appropriately. In addition
not all events are supported by all IBM MQ platforms. Most notably, sadly, IBM MQ for z/OS does not support
Statistics and Accounting messages but instead uses SMF records.

You can change the list of event queues that are read by MQEV. For example you might prefer to merge all of your
event queues into a single queue or route messages from other queue managers to another local queue. In these
cases you would use commands such as ADD EVQ and REMOVE EVQ to alter the list of queues that MQEV will
monitor. Full descriptions of all of the MQEV commands are in Chapter 13: Command Reference on page 63.

1.2.2 Command Queue
MQEV responds to various user commands. These commands are sent to MQEV via a command queue called
MQGEM.MQEV.COMMAND.QUEUE. Commands can be in the following formats:

• MQSC
• Escape PCF (MQSC command wrapped in a PCF message)
• PCF

Please refer to Chapter 13: Command Reference on page 63 for a description of these commands.

An MQEV licence allows you to use MQSCX (Command Line) or MO71 (GUI) to administer MQEV. You can
also, of course, write your own tools to issue MQEV commands.

1.2.3 Persistence Layer
Clearly MQEV needs to store data to some persistent media. A database might seem the obvious choice but
databases have significant disadvantages. They add complication, expertise requirements and often expense. For
these reasons MQEV stores the data in a single queue as described below. This means that the data is kept within
the MQ world, and can be consumed transactionally using just a local transaction with no need to employ a global
transaction coordinator.

Other advantages include things such as HA and Disaster recovery. Having all the state on an MQ Queue in the
same 'domain' as the event queues themselves means that all the event data can fail over together without the need
to synchronise with a database.

Of course there are many factors related to persistence such as “How much data are we talking about?” and “What
prevents this data store just getting bigger and bigger and bigger?”. These are discussed in Chapter 19 Data
Management on page 214. However, for the moment, let's just content ourselves with the knowledge that data is
persisted and it is all stored somehow in a single MQ queue.

4 These queues are not available on z/OS, and therefore are not added to MQEV by default on z/OS.

Page 7

MQEV User Guide – Version 9.4.1

1.2.3.1 The Persistence Queue
Each instance of MQEV will store it's persistent data in a single persistence queue. It is not possible for two or
more instances of MQEV to share the same persistence queue. Nor is it possible for a single instance of MQEV to
use more than one queue. However, the name of the persistence queue used depends on how you configure MQEV.
From a persistence point of view MQEV can run in two modes.

1. You wish to have the persistence queue on the same Queue Manager as the event Queues

You could start such an MQEV instance with the command:
mqev -m QM1

This is the simplest way to run MQEV. Everything is on the same Queue Manager, QM1.

In this case MQEV will use a queue called MQGEM.MQEV.DATA.QUEUE.

2. You wish to have the persistence queue in a different 'State' Queue Manager

You could start such an MQEV instance with the command:
mqev -m QM1 -l -s MQEVSTATE

Note that we have added the -l parameter since it only really makes sense to use a different State Queue
Manager if you are accessing your monitored Queue Manager over a client connection. Remember that it is
not recommended that the persistence queue is accessed over a client link which is why we need the State
Queue Manager in the first place.

In this case MQEV will use a persistence queue which has the same name as the Queue Manager it is
reading from the event queues, in this case QM1.

This is why it is recommended that the MQEVSTATE Queue Manager is not used for anything else since you
could not, for example, define a transmission queue for QM1 because MQEV expects to be able to use this
name.

You should ensure that the persistence queue is defined with a sensible max depth. It must be at least 5,000 but if
you intend to store lots of records and keep them for a long time you may wish to have a much larger value than
this. MQEV will also refuse to start or end if the data queue is not large enough.

In addition MQEV will stop processing event queues if it does not have space for at least 250 additional messages.
This is to reduce the chances that MQEV gets half way through a transaction of messages and then finds there is
not sufficient space on the queue to harden the results. If MQEV detects this situation then it will raise and alaert
and the statues of the event queues will change.

Essentially it is recommended to be generous in your MAXDEPTH value of this queue. There is no penalty in IBM
MQ for over-subscribing the size. IBM MQ will not, for example, allocate additional disk space for a queue that
can grow large. The disk storage is only used if, and when, the extra space is required.

1.2.4 Compression
MQ Event, Statistics and Accounting messages can be fairly large in relation to the data that they actually convey.
This layer is responsible for a number of basic tasks.

1. Reducing the message size wherever possible. In IBM MQ PCF messages, strings are often blank padded
to their maximum length. Numbers are stored as 32-bit integers even when the maximum set of values is
less than 10. As a result, compression rates of 20-30% are quite normal.

2. Discarding certain messages. For example, you may decide that it is not worth saving general DISPLAY
command events.

Page 8

MQEV User Guide – Version 9.4.1

3. Merging some events. For example, IBM MQ sends a change object event as two event messages – a
BEFORE and an AFTER image. MQEV will merge these two events into a single event message. This
merge results in a storage saving, as well as making the event easier to process.

4. Discarding elements of no value. For example Statistics and Accounting messages contain lots of data
saying what didn't happen. For example, there were no puts, no browses, no commits etc.

5. Discarding information about temporary queues. You can configure whether a stream should store
information about temporary queues, usually just used as reply queues, or not.

6. Using a string dictionary
The same strings occur time and time again but MQEV will only store the value once in a dictionary.

Clearly the combination of these tasks means that the exact content of the original event messages is not
maintained. If you need to maintain all the event data 'as-is' for some reason then you can daisy chain other
processes either before or after MQEV. You can configure MQEV to forward all event messages to another queue
before they have been processed. See 20.4.1: Daisy chaining on page 218 for more information on this.

If you find that, even after compression, MQEV is being required to store just too much data then consider using
Aggregation described on page 39. Often it is not necessary to keep every record ever issued by IBM MQ instead
you want to record of the total values but with a lower time resolution.

1.2.5 Event Storm Detection
Events Storms only apply to actual MQ Event messages. There can be times when IBM MQ will issue the same
event many times in a short space of time. Usually this is because of some misbehaved application that is doing the
'wrong' thing over and over again. However, it can be something quite innocuous. Consider, the example a Queue
Manager which has 10,000 clients connected to it that then loses the network. MQ will generate thousands of
events within the space of a few seconds. One must ask oneself whether it really is worth storing each notification
when they are all almost identical.

MQEV gives you the choice and allows you to decide what constitutes a 'storm'. By default a storm is receiving
more than 20 identical events in a single minute. However, you could decide that it ought to be more or less. For
more about event storms, see Chapter 15: Event Storms on page 177.

1.2.6 Script Processor
One of the powerful features of MQEV is that it allows you to write simple script functions which are invoked at
certain key moments of MQEV. For example, each time MQEV receives an event message it will call a function
called MQEVEvent(). One could choose to do nothing in this function or you can check certain values of the event
and the issue some action. The list of possibilities is literally endless. MQEV uses the same language as used by
MQSCX so any users of that product will find everything very familiar. For more about this scripting, and the
various functions that are called by MQEV, see Chapter 16: MQEV Scripting on page 178.

1.3 Feedback
We are always interested in hearing user views, whether good or bad, and would love to hear your opinions,
comments and suggestions. So, if you would like to make a comment either about MQEV itself or this manual then
please do contact us at support@mqgem.com.

So, without further delay let’s see how to get up and running with MQEV.

Page 9

mailto:support@mqgem.com

MQEV User Guide – Version 9.4.1

2 Licensing
To be able to run MQEV you will need a valid licence. This can either be a purchased licence or a free trial licence.
If you would like to try out MQEV for free then a 1-month trial licence can be obtained by sending an email to
support@mqgem.com.

Each licence is for a certain period of time, usually one year rather than for a particular version of MQEV. There
are number of advantages of this scheme, the two main ones being:

• Purchasing decision is simpler
The MQEV licence covers a period of time not a release. It is therefore not necessary to concern oneself
about whether a bigger, better version is about to come out soon since whatever licence you buy now will
also work for that version. You can always run the latest version with the latest set of features.

• Features are available sooner
Using this model it is not necessary for us to collect a large group of features together to 'justify' a new
release of MQEV. Instead a new release can be made available whenever a new feature is added which is
regarded as sufficiently useful since all current users will be able to migrate to the new version at no cost to
themselves.

As has been mentioned before you can issue commands to MQEV from either MQSCX or MO71. These products
will therefore also recognise your MQEV licence as valid and allow you to use them for that purpose. Note that
although MQSCX would allow you to issue MQEV commands you could not issue normal MQ commands
without also having an MQSCX licence. Similarly with MO71 it will only allow MQEV based operations without
a valid MO71 licence. Other MQGem products allow for individual, single user, licences. However, this is not
really applicable to MQEV since the program is used on a queue manager wide basis. Therefore for MQEV there
are just two types of licences on distributed platforms, and three types on z/OS.

Type Fields Set Description

Ruby machine MQEV is supported by any number of users on a single z/OS machine. This
licence type is not applicable for MQEV on distributed platforms.

Diamond location MQEV is supported by any number of users at the same site on any set of
machines.
The location field gives the location, for example “London, England” of where the
licence is based.

Enterprise None MQEV is supported across your whole enterprise. This means any number of users
at any number of locations.

An Enterprise licence can be bought by purchasing just 3 Diamond licences.

2.1 Licence File Location
If a licence file is bought you will be sent an mqgem.lic file. All you need to do is place this licence file in the
appropriate place for the MQEV program to find it as detailed in the table.

Platform Location

Windows and Linux Same directory as the MQEV program.
AIX and z/OS UNIX Current directory
z/OS DD:MQGEML

Alternatively you can set environment variable MQGEML to point to the directory path where the licence file can be
found (in which case the name will be assumed to be mqgem.lic), or MVS file or DD name of the licence file. For
example, if you use the program in all of TSO, z/OS UNIX and from JCL, you can have one copy of the licence file
saved either as a z/OS UNIX file or in an MVS dataset, and refer to it from any environment.

Page 10

mailto:support@mqgem.com

MQEV User Guide – Version 9.4.1

2.1.1 When running MQEV in z/OS UNIX
To refer to the licence file which is stored in an MVS dataset, set the MQGEML environment variable using
commands like the following:

export MQGEML=//'GEMUSER.USER.LIC(MQGEM)'
mqev -m MQG1

2.1.2 When running MQEV interactively in TSO
You can allocate a DD name for use in TSO, using the TSO ALLOCATE command. For more information about
this command, refer to z/OS TSO/E Command Reference > ALLOCATE command and Opening files > DDnames.

To refer to the licence file which is stored in an MVS dataset, using a DD name, use commands like the following.

ALLOCATE DDNAME(MQGEML) DSNAME('GEMUSER.USER.LIC(MQGEM)') SHR
mqev -m MQG1

To refer to the licence file which is stored in a z/OS UNIX file, using a DD name, use commands like the
following.

ALLOCATE DDNAME(MQGEML) PATH('/u/gemuser/licences') PATHOPTS(ORDONLY)
mqev -m MQG1

2.1.3 When running MQEV from JCL
To refer to the licence file which is stored in an MVS dataset, configure your JCL as follows.

//MQEV EXEC PGM=MQEV,PARM=('-m MQG1')
//MQGEML DD DSN=GEMUSER.USER.LIC(MQGEM),DISP=SHR

To refer to the licence file which is stored in a z/OS UNIX file, configure your JCL as follows.

//MQEV EXEC PGM=MQEV,PARM=('-m MQG1')
//MQGEML DD PATH='/u/gemuser/licences',PATHOPTS=(ORDONLY)

2.2 Multiple licences
If you have multiple licences then they can be concatenated into a single mqgem.lic file. This can be done using
simple OS commands such as copy or by using your favourite editor. Ensure that all lines are copied in their
entirety, including the carriage return character at the end. Blank lines can be added to the file as required.

2.3 Licence Renewal
Licence renewal is never automatic. MQEV will start issuing warnings as you get close to the licence expiry date.
These warnings will be in the form of alerts (see Chapter 14: Alerts on page 172 for more about alerts). The priority
of the alert will increase as the expiry date gets closer.

By default MQEV will start to remind the user about an expiring licence some 60 days before it expires. However,
you can adjust this interval, if you like, by altering the EV object.

A new licence can be purchased at any time and a new licence file will be sent which extends the current licence by
whatever period has been purchased. There is therefore no concern about losing time by renewing early.

When you get a new licence just replace your current mqgem.lic file and within the next 24 hour period MQEV
will notice and any outstanding alerts will be removed.

Page 11

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/ddname.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ikjc500/dup0009.htm

MQEV User Guide – Version 9.4.1

2.4 Changing your licence file
The licence file is a simple text file. Generally speaking if you change the contents of the licence file you will
invalidate it and it will cease to work. However, there are some minor changes you can make if you wish. Naturally
it is always recommended that you keep a copy of the original unchanged file.

 You can change the case of any of the values.
 You can add or remove white space such as blanks
 You can add or change any lines which start with '*' since these are comment lines.

Remember that more than one licence can be contained within the single mqgem.lic file if required.

Page 12

MQEV User Guide – Version 9.4.1

3 Getting Started
This chapter will introduce you to the basics of MQEV and allow you to get up and running quickly. However, it is
strongly recommended that you read the entire manual before deciding how to use the product in a production
environment.

3.1 Installation
If MQEV has already been installed you can skip this section.

The examples in this manual assume that the program executable is in the path. The examples and screen-shots are
from a Windows system but very similar screens will be seen in Unix. The code should run correctly on most
versions of Windows and Unix however it is always strongly recommended that you 'try before you buy'. In other
words, request a trial licence, play with the program and ensure that it meets you needs. If all is well then you can
go ahead with the purchase. If you encounter problems then please contact support@mqgem.com and we'll see if
we can help.

MQEV is provided as a zip, tar or gzip file depending on the platform. In addition to the executable file, whose
name will vary by platform, the following addition text files are also provided on all platforms:

mqev.mqx Sample minimum script file (see 16 MQEV Scripting on page 178)

mqconfig.mqx Script file to define the two queues needed by MQEV (see 3.3.1 Queues on
page 16)

TestEventMsgs.qld a QLOAD file with a set of example event messages (see 3.7 Testing with
other events on page 31 for more information about this)

mqev.h the MQEV header file for writing your own program to send commands to
MQEV if you choose not to use either MO71 or MQSCX (see 13.1
Programmable command format commands and responses on page 64 for
more on this)

3.1.1 Windows
MQEV is provided as a simple zip file. Once you have downloaded this file you should unzip it into a location
which is either in your path or can be explicitly referenced on the command line.

3.1.2 Unix
MQEV is provided as a simple tar or gzip file. Once you have downloaded this file you should untar the file using
one of the following commands depending on the file type (note that the file name depends on the platform).

tar -xvzf mqev.tgz

OR

gzip -d mqev.tar.gz (If file is a gz file)
tar -xvf mqev.tar

Move the file to a directory which is either in your path or can be explicitly referenced on the command line.

Page 13

mailto:support@mqgem.com

MQEV User Guide – Version 9.4.1

3.1.3 z/OS
MQEV is provided as a zip file. Once you have downloaded this file you should unzip before following these
instructions.

In addition to the files detailed above that are on every platform, the zip file also contains the following:-

MQEV.SEQ sequential file containing the MQEV program

MQEV.JCL example JCL for running the program in batch (see 11.2 Running MQEV in
batch (z/OS only) on page 59 for more about this)

MQEVSTC.JCL example JCL for running the program as a started task (see 11.3 Running
MQEV as a Started Task (z/OS only) on page 60 for more information about
this)

Once unzipped, transfer the MQEV.SEQ file to a z/OS system using the following commands.

ftp> binary
ftp> quote site recfm=FB lrecl=80 blksize=3120 blocks primary=1000
ftp> put MQEV.SEQ

Once the MQEV.SEQ file is successfully FTPed to your z/OS system, from TSO use the following command:

 receive inds(MQEV.SEQ)

When prompted for a filename, reply

DSN(USER.LOAD)

The other files in the zip are text files and can be transferred using ascii mode in ftp if you plan to use them.

MQEV can be run on z/OS in BATCH (including as a Started Task). Example pieces of JCL are provided in the zip
file as noted above. MQEV can also be run interactively, e.g. from the TSO/E READY prompt, or the ISPF
Command Shell (=6). It can also be run in z/OS UNIX (see below).

3.1.3.1 z/OS Unix Installation
If you wish to run MQEV in z/OS UNIX, you can copy the MVS executable module that you have installed in the
previous section, to a directory in z/OS UNIX with the following command.

TSO OPUT 'GEMUSER.USER.LOAD(MQEV)' '/u/gemuser/bin/mqev' BIN

3.1.4 MQEV Administration
The MQEV installation contains the MQEV program which will collect and store MQ events however it doesn't
include the means to administer the program. For that you need to also install either our command line tool
MQSCX5 or our GUI Administration tool MO716 (or indeed both if you wish).

Download the respective install images for these products and use the MQEV licence file in place of the normal
product licence file.

If you are already an MQSCX or MO71 user, and have licences for these products, we recommend concatenating
the licences into a single licence file (as described in 2.2: Multiple licences on page 11) so that these tools will find
both licences and allow you to administer IBM MQ and MQEV from the same instance of the tool.

5 At least version 9.1.0
6 At least version 9.1.4

Page 14

MQEV User Guide – Version 9.4.1

3.2 Upgrade
To upgrade MQEV to a new version, we always recommend that you take a backup of the previous version of the
executable and of the data behind it before running the new version.

To backup the data that MQEV uses, stop the MQEV program from running, and then use one of the following
commands, depending on the tools you have available on your system.

Ensure the file name provided is unique.

dmpmqmsg -m MQG1 -i MQGEM.MQEV.DATA.QUEUE -f C:\MQGem\MQEV\Backup210820.qld

You can get qload to generate a file name for you with, say the current date in it, by using the %c file name insert.
This will help when ensuring that the file name is unique.

qload -m MQG1 -i MQGEM.MQEV.DATA.QUEUE -f C:\MQGem\MQEV\Backup%c.qld

If you have to reinstate the backup of the data, this of course implies that you will take a step back in time with the
events that you have captured. If you wish to save off the event messages so that they can be processed again after
a backup is reinstated, you can make use of the FWDQ attribute to save a copy of each event to a side queue. Read
more about this attribute and also FWDPSIST to ensure you save the messages appropriately, in ALTER EVQ on
page 79.

Page 15

MQEV User Guide – Version 9.4.1

3.3 Configuration
MQEV is essentially infinitely configurable since it is capable of running scripts in response to various activities in
the queue manager. However, in the interests of learning to walk before we run let's just consider the minimum
configuration one needs to get the program running. It is recommended that for your first experience of MQEV
you create a test local queue manager that you can 'play' with until you are comfortable with how MQEV operates
and how it can be configured. For the examples below we'll assume that your test queue manager is called MQG1
but if you name yours differently then just replace instances of MQG1 with the name you have chosen.

3.3.1 Queues
We have seen that in order to operate MQEV requires two queues; a command queue and a data queue. These
queues are just normal local queues and have fixed names. A file config.mqx is included in the install zip file which
contains the commands for defining these queues. Feel free to change these definitions to suit your local standards
however there are certain minimums which should be observed for correct program operation.

MQGEM.MQEV.COMMAND.QUEUE

MAXMSGL MQEV commands are not very long.
The value must be at least 10,000 but it is recommended you keep the normal default of at least
4,194,304.

MAXDEPTH The depth of the command queue should be sufficient to handle as many concurrent requests at
you might ever issue. In general this will probably not be very many however it is
recommended that you keep the default of at least 5,000.

Triggering It is not recommended that triggering is enabled. MQEV is designed to be started at the dawn
of time and retry connections at certain intervals.

MQGEM.MQEV.DATA.QUEUE or <QM Name> if you are using a State Queue Manager

MAXMSGL MQEV currently stores event data in chunks of 1 MB so a value of 2MB will work. However, it
recommended that keep the normal default of at least 4,194,304

MAXDEPTH This value depends to some extent on how much event data you want MQEV to store.
A rough guide would say that you need 1 message per 3000 events.

So, suppose your Queue Manager generates 5,000 events per day and you wish to keep those
events for six months. This would mean MQEV should store 900,000 events. This would
require a queue MAXDEPTH of at least 300. Clearly this is just a rough calculation so it is
recommended that you greatly over specify your queue definition to avoid storage problems,

It is recommended that you keep the normal default of at least 5,000.

SHARE Ensure that the queue is shareable.

Triggering It is not recommended that triggering is enabled.

3.3.2 Script functions
Script functions allows the user to configure behaviours within MQEV when certain events occur either in IBM
MQ or in the life of MQEV. It is not necessary to actually have any code at each function point but it is necessary
to have the function. MQEV will refuse to run if it either can't find your script file or one or more functions are
missing.

Page 16

MQEV User Guide – Version 9.4.1

To make life easier we have provided a skeleton script file called mqev.mqx in the zip file. This file must be placed
where MQEV can read it. The simplest approach to this is just have the mqev.mqx file in the same directory as the
MQEV program. However, if for some reason you prefer to have it elsewhere then when you run the program you
must tell MQEV where it is. This is done with the -f parameter, or alternatively on z/OS you can use the MQEVMQX
DD name (see 11.2.2 DD name MQEVMQX on page 59).

So, for example you could run MQEV like this:

mqev -f c:\MQEV\script\mqev.mqx

In fact MQEV will assume the name of the file is mqev.mqx so the following will also work:

mqev -f c:\MQEV\script

If you choose to change the name of the script file then you must include it in the parameter value.

3.3.3 Events
Of course for MQEV to show us anything we also need IBM MQ to generate some events. Perhaps the simplest
events to get the queue manager to generate are the command and configuration events. So, let's change our queue
manager to generate these types of events. Issue a command such as the following to your queue manager:

ALTER QMGR CONFIGEV(ENABLED) CMDEV(NODISPLAY)

This will cause your queue manager to send event messages to the queues SYSTEM.ADMIN.COMMAND.EVENT and
SYSTEM.ADMIN.CONFIG.EVENT whenever you issue an IBM MQ command (which is not a DISPLAY) to work
with an MQ object, for example to create a queue. If you really wish to see all commands then you can set the
value to CMDEV(ENABLED). However, this is not normally recommended since display commands are both
frequent and generally uninteresting.

3.3.4 Statistics
If you are interested instead in Statistics messages i.e. information which tells you which resources are being used
in your Queue Manager and by how much then you would issue a command such as the following command:

ALTER QMGR STATQ(ON)

This will cause your queue manager to send statistics messages to the queue
SYSTEM.ADMIN.STATISTICS.QUEUE.

IBM MQ is capable of generating statistics on Queue Usage, Channel Usage and MQI Usage and each one can be
switched on independently. You can also change the interval that the messages are generated using the STATINT
attribute. Note that setting a really short interval can dramatically increase the amount of data that is needed to be
stored as well as increasing the burden of message traffic and processing. It is therefore recommended not to set too
small a value for the interval in production systems.

3.3.5 Accounting
If you are interested instead in Accounting messages i.e. information which tells you who and what are doing things
to your Queue Manager then you would issue a command such as the following command:

ALTER QMGR ACCTMQI(ON)

This will cause your queue manager to send accounting messages to the queue
SYSTEM.ADMIN.ACCOUTING.QUEUE.

Page 17

MQEV User Guide – Version 9.4.1

IBM MQ is capable of generating accounting information on Queues and MQI Usage and they can be switched on
independently. You can also change the interval that the messages are generated using the ACCTINT attribute. Note
that setting a really short interval can dramatically increase the amount of data that is needed to be stored as well as
increasing the burden of message traffic and processing. It is therefore recommended not to set too small a value
for the interval in production systems.

3.4 Running the program
Of course normally you would run MQEV as a background task, perhaps started by an automatic scheduler, or
some of the facilities discussed in Chapter 11 Running MQEV with your Queue Manager on page 58. However, in
our first attempts it is far easier to see what is going on if we just run it in a command window.

So, bring up a command window (that has the correct MQ environment) and issue the following command:

mqev -m MQG1

If all goes well you should see a screen that looks something like this:

MQEV Version:9.1.0 (64 Bit) Build Date:Nov 21 2019

Log Root Directory:c:\MQGem
MQEV Initialising...
Loading MQSCX Script...
MQSCX Script active
Connecting to 'MQG1'
Connect 'MQG1' OK
Connected to 'MQG1'
09:04:10 MQEV Qm(CONNECTED) Events(0) Stats(0) Cmds(0) Alerts(0)

If you don't see a screen like this then there should be an error message telling what the problem is. Go back to the
previous sections of this manual and double check your configuration. Ensure, for example, that you have created
the command and persistence queues.

Of course the MQEV program can take a number of Parameters which are described on page 32. However, for the
moment let's just accept the defaults. As you become more familiar with MQEV you may want to modify it's
default behaviour.

As we said before MQEV is designed to be a background process on your system so the output display is very
rudimentary but in familiarising yourself with the product it can be useful. As you can see MQEV goes through a
number of steps to initialise itself. The most important of these is to connect to the queue manager and to load and
parse the event scripts. It will then go to the data queue and load its configuration. If it doesn't find any messages
on the data queue (first time in) it will use a set of default configuration options which will read the standard IBM
MQ event queues. This is perfect for our purposes.

When MQEV is running it will write various error and informational messages to the screen. It will also write out a
very simple status summary. This can be useful as a quick glance of what the current state of the program is.

The last line will always contain the following:

• Current Time
• Name of this instance of MQEV
• The state of the MQ connection, whether it is connected, retrying etc
• How many Events the program has processed
• How many Accounting and Statistics messages the program has processed
• How many Commands the program has processed
• How many Alerts are currently outstanding

Page 18

MQEV User Guide – Version 9.4.1

As the program runs and it processes messages and commands you should see these status numbers change
according.

From this window you can also tell MQEV to end by entering 'Q' and then entering 'y' to the confirmation
question.

The only other command you can enter at this point is '!' which will put MQEV into Debug mode. For more
information about this please see Chapter 18 Debugging on page 207.

Those of you will a sharp mind may already be wondering about what happens if the MQEV program is running in
the background – clearly you won't be able to see these status messages. How do you know what is going on. Well,
there are commands you can issue to MQEV to interrogate it's status. MQEV will also write out status messages to
a log file. Please see Chapter 9 Logging on page 54 for more about this.

Now that the MQEV program is running, you will want to interact with it. The way you do that depends on
whether you want to use a command line program or to view things in a GUI. We'll cover both below. Even if you
are planning to use just the GUI to control MQEV we suggest you read the MQSCX section below since it
introduces a number of MQEV concepts.

3.5 Displaying MQEV in a command line (MQSCX)
Hopefully, as discussed before, you have installed the latest version of MQSCX in your path and given it access to
your MQEV licence. Assuming that is the case then we can just start an instance of MQSCX with the following
command:

mqscx -m MQG1

Now, when MQSCX starts it will be expecting to issue IBM MQ commands. However, we want MQSCX to send
it's commands to MQEV. The way we tell MQSCX to do that is to issue the following command:

=mqev

What this does internally of course is to tell MQSCX to open and direct all subsequent commands to
MQGEM.MQEV.COMMAND.QUEUE. Of course in order to do this you must be authorised to perform these actions.
However, since you created the queue manager and queue we'll assume you are.

This command is not necessary if you only have an MQEV licence and not an MQSCX licence. In such cases
MQSCX will start initially in MQEV mode. By default the MQSCX prompt will tell you whether you are in
MQEV mode by displaying something such as:

MQEV:MQG1>

Now let's look at what queues MQEV is set to process by issuing the following command:

DISPLAY EVQ(*)

We will get a response something like the following:

Page 19

MQEV User Guide – Version 9.4.1

EVQ(SYSTEM.ADMIN.ACCOUNTING.QUEUE) MSGS(0) STATUS(DEFINED)
EVQ(SYSTEM.ADMIN.CHANNEL.EVENT) MSGS(0) STATUS(DEFINED)
EVQ(SYSTEM.ADMIN.COMMAND.EVENT) MSGS(0) STATUS(DEFINED)
EVQ(SYSTEM.ADMIN.CONFIG.EVENT) MSGS(0) STATUS(DEFINED)
EVQ(SYSTEM.ADMIN.LOGGER.EVENT) MSGS(0) STATUS(DEFINED)
EVQ(SYSTEM.ADMIN.PERFM.EVENT) MSGS(0) STATUS(DEFINED)
EVQ(SYSTEM.ADMIN.PUBSUB.EVENT) MSGS(0) STATUS(DEFINED)
EVQ(SYSTEM.ADMIN.QMGR.EVENT) MSGS(0) STATUS(DEFINED)
EVQ(SYSTEM.ADMIN.STATISTICS.QUEUE) MSGS(0) STATUS(DEFINED)
Total display responses - Received:9

If this is not the first time you have run MQEV then you may find that some of the queues are already ACTIVE or
perhaps even SUSPENDED however initially, when they are first defined, they come up in DEFINED state to allow
you to ensure that the configuration is as you want it before MQEV starts processing messages. In this instance we
are happy to accept the default configuration so let's go ahead and tell MQEV to process some of the queues.

Let's issue the following commands:

RESUME EVQ(SYSTEM.ADMIN.COMMAND.EVENT)
RESUME EVQ(SYSTEM.ADMIN.CONFIG.EVENT)

If we issue the display again we should see something like this. As you can see MQEV has now processed both a
command event and two configuration events. We'll see in a moment that these are from turning events on.

EVQ(SYSTEM.ADMIN.ACCOUNTING.QUEUE) MSGS(0) STATUS(DEFINED)
EVQ(SYSTEM.ADMIN.CHANNEL.EVENT) MSGS(0) STATUS(DEFINED)
EVQ(SYSTEM.ADMIN.COMMAND.EVENT) MSGS(1) STATUS(ACTIVE)
EVQ(SYSTEM.ADMIN.CONFIG.EVENT) MSGS(2) STATUS(ACTIVE)
EVQ(SYSTEM.ADMIN.LOGGER.EVENT) MSGS(0) STATUS(DEFINED)
EVQ(SYSTEM.ADMIN.PERFM.EVENT) MSGS(0) STATUS(DEFINED)
EVQ(SYSTEM.ADMIN.PUBSUB.EVENT) MSGS(0) STATUS(DEFINED)
EVQ(SYSTEM.ADMIN.QMGR.EVENT) MSGS(0) STATUS(DEFINED)
EVQ(SYSTEM.ADMIN.STATISTICS.QUEUE) MSGS(0) STATUS(DEFINED)
Total display responses - Received:9

MQEV will remember that you want to process these queues and next time you start MQEV or if it needs to
reconnect for some reason it will immediately start processing messages from the active queues.

Now, let's issue a another command of some sort that will result in an event. You can choose any command you like
but we'll assume we're defining a queue. Issue the following:

DEFINE QLOCAL(MQEV.TEST.QUEUE)

It depends on your queue manager settings but after issuing this command you may see the Events() value
increment by two. So, why two ? Well, assuming that you have both command and configuration events enabled,
IBM MQ will send you one of each event. One to tell you that a DEFINE QLOCAL command was issued and one to
tell you that the configuration has changed and that a new object has been created.

What we want to do now is to be able to look at the events that were generated by IBM MQ.

So, how do we ask MQEV to display us these events. Well it is very simple, issue the following command:

DISPLAY EVENTS(*)

This will return something that looks a little like this:

Page 20

MQEV User Guide – Version 9.4.1

EVQMGR(MQG1) EVTIME(2019-10-09 22:15:26 (Local))
SUMMARY(Config - Create Object - Queue:MQEV.TEST.QUEUE)
__
EVQMGR(MQG1) EVTIME(2019-10-09 22:15:26 (Local))
SUMMARY(Command - Create Queue - Queue:MQEV.TEST.QUEUE)
__
EVQMGR(MQG1) EVTIME(2019-10-09 22:14:51 (Local))
SUMMARY(Config - Change Object - Qmgr:MQG1 - CONFIGEV[DISABLED -> ENABLED] CMDEV[
DISABLED -> ENABLED])
__
EVQMGR(MQG1) EVTIME(2019-10-09 22:14:51 (Local))
SUMMARY(Command - Change Qmgr - Qmgr:MQG1)
__
Total display responses – Received:4

The first question that may spring to mind is “where are all the other fields?”. We all know that a queue definition
has a lot of fields so why is the output so short ? Well, the answer is that MQEV allows you to choose how much
data you get back. By default you will only get back a summary of information such as the Queue Manager it
happened on, the time it happened and summary text of what happened in a field called SUMMARY. This simple field
can be very useful in getting a quick feel for the event rather than trying to assimilate lots of separate values.

However, let's assume that we are curious type and we want to see the whole event, how would we do that ? Well
change your command to the following (don't worry I'll explain MAXRESP in a moment!):

Page 21

MQEV User Guide – Version 9.4.1

DISPLAY EVENTS(*) DISTYPE(DETAIL) MAXRESP(2)

You will see that now we get some additional fields. We get told the object name, object type and userid that was
most associated with the event and the event reason code. We also get told the EVENTID which we'll talk about
later.

EVQMGR(MQG1) EVENTS($EVENTS) EVTIME(2019-10-09 22:15:26 (Local))
EVREASON(CFGCRTOBJ) EVUSERID(mqgemusr) EVOBJNAME(MQEV.TEST.QUEUE)
EVOBJTYPE(QUEUE) EVENTID(00000004)
SUMMARY(Config - Create Object - Queue:MQEV.TEST.QUEUE)
__
EVQMGR(MQG1) EVENTS($EVENTS) EVTIME(2019-10-09 22:15:26 (Local))
EVREASON(CMDCRTQ) EVUSERID(mqgemusr) EVOBJNAME(MQEV.TEST.QUEUE)
EVOBJTYPE(QUEUE) EVENTID(00000003)
SUMMARY(Command - Create Queue - Queue:MQEV.TEST.QUEUE)
__
Total display responses - Received:2

As I am sure you realise we are still not seeing the whole event. If we really needed to see everything then we could
issue the following:

DISPLAY EVENTS(*) ALL MAXRESP(2)

...and we would see output such as this:

EVQMGR(MQG1) EVENTS($EVENTS) EVTIME(2019-10-09 22:15:26 (Local))
EVREASON(CFGCRTOBJ) EVTYPE(CONFIG) EVUSERID(mqgemusr)
EVOBJNAME(MQEV.TEST.QUEUE) EVOBJTYPE(QUEUE) EVENTID(00000004)
CFHCMD(43) CFHREASON(2367)
SUMMARY(Config - Create Object - Queue:MQEV.TEST.QUEUE) EVENTUSER(mqgemusr)
EVSID(1D01010500000000000515000000E9B1B2A2AA735C01F86AE6C9EA03000000000000000000
000000)
EVORIGIN(MSG)
EVACCTTK(16010515000000E9B1B2A2AA735C01F86AE6C9EA03000000000000000000000B)
EVAPPLID() EVAPPLTYPE(WINDOWSNT)
EVAPPLNAME(d:\nttools\mqscx.exe) EVAPPLORIG() OBJTYPE(QUEUE)
QUEUE(MQEV.TEST.QUEUE) DESCR() PROCESS()
BOQNAME() INITQ() TRIGDATA() CLUSCHL()
CUSTOM() CLUSTER() CLUSNL() CRDATE(2019-10-04)
CRTIME(22.52.43) ALTDATE(2019-10-04) ALTTIME(22.52.43) GET(ENABLED)
PUT(ENABLED) DEFPRTY(0) DEFPSIST(NO) MAXDEPTH(5000)
MAXMSGL(4194304) BOTHRESH(0) SHARE(1) DEFSOPT(SHARED)
HARDENBO(1) MSGDLVSQ(PRIORITY) RETINTVL(999999999) USAGE(NORMAL)
TRIGCTL(NOTRIGGER) TRIGTYPE(FIRST) TRIGDEPTH(1) TRIGMPRI(0)
QDEPTHHI(80) QDEPTHLO(20) QDPMAXEV(ENABLED) QDPHIEV(DISABLED)
QDPLOEV(DISABLED) QSVCINT(999999999) QSVCIEV(DISABLED) DISTL(NO)
NPMCLASS(NORMAL) STATQ(QMGR) ACCTQ(QMGR) MONQ(QMGR)
SCOPE(QMGR) DEFBIND(OPEN) CLWLRANK(0) CLWLPRTY(0)
CLWLUSEQ(QMGR) DEFPRESP(SYNC) DEFREADA(NO) PROPCTL(COMPAT)
IMGRCOVQ(QMGR) DEFTYPE(PREDEFINED) QTYPE(QLOCAL)
__

Page 22

MQEV User Guide – Version 9.4.1

EVQMGR(MQG1) EVENTS($EVENTS) EVTIME(2019-10-09 22:15:26 (Local))
EVREASON(CMDCRTQ) EVTYPE(COMMAND) EVUSERID(mqgemusr)
EVOBJNAME(MQEV.TEST.QUEUE) EVOBJTYPE(QUEUE) COMMAND(Create Q)
EVENTID(00000003) CFHCMD(99) CFHREASON(2413)
SUMMARY(Command - Create Queue - Queue:MQEV.TEST.QUEUE)
CMDCTX:
EVENTUSER(mqgemusr)
EVSID(1D01010500000000000515000000E9B1B2A2AA735C01F86AE6C9EA03000000000000000000
000000)
EVORIGIN(MSG)
EVACCTTK(16010515000000E9B1B2A2AA735C01F86AE6C9EA03000000000000000000000B)
EVAPPLID() EVAPPLTYPE(WINDOWSNT)
EVAPPLNAME(d:\nttools\mqscx.exe) EVAPPLORIG()
CMDDATA:
QUEUE(MQEV.TEST.QUEUE) QTYPE(QLOCAL)
__
Total display responses - Received:2

Wow, that is a lot more stuff! We can see the full command that was issued and the full queue definition. We can
even see some of the structure of the event message. For example a command event actually has three parts to it. A
general set of fields which tend to be on most events. Then a group of fields known as the 'Command Context'. This
is followed by a group of fields which is the 'Command Data' itself. This is shown in the MQSCX response as
CMDCTX: and CMDDATA: respectively.

The DISTYPE() parameter has four possible values:

• SUMMARY
This is just the default that we saw earlier.

• DETAIL
This is the value to use if you want to see just the major identifying fields.

• MINIMUM
Yes, believe it or not you can be even more terse than the SUMMARY display. MINIMUM tells MQSCX to
return just the minimum of fields which are the Queue Manager and Event Reason. This is helpful if you
want to add a specific set of fields to your output and not have some of the fields that MQEV normally
returns by default.

• CONDENSE
This is almost the same as DETAIL, all fields are returned, except for empty ones. MQEV will not return a
field with no value.

Regardless of the display type you can always specify additional fields if you want those specifically returned in
typical MQSC fashion. By specifying 'ALL' you are, of course, asking to see every field regardless of detail level.

So what else is this display telling us? Well the eagle eyed amongst you may have noticed the EVENTS($EVENTS)
attribute. What does this mean ? Well, if you wish to know more about this them please refer to Chapter 5 Streams
on page 36. For now all you really need to know is that MQEV does not necessarily store all of the events in the
same bucket. You can choose to spread the events out according to any criteria you wish. By default though all
events will be put in the $EVENTS bucket.

The next question that might be burning through your mind is what happens when MQEV has been running for,
let's say, six months? We have already discussed that by then we might have 900,000 events! The last thing we
want is to sit there waiting for 900,000 events to be sent to us. Well don't worry, that won't happen. At least not
unless you want it to. MQEV has two ways of limiting the responses. Firstly there is just a standard count, called
MAXRESP, which set the maximum number of responses you want. If not specified it will assume the default value
of 100.

Page 23

MQEV User Guide – Version 9.4.1

Go ahead, give it a try, Issue the command:

DISPLAY EVENTS(*) DISTYPE(DETAIL) MAXRESP(1)

You will see that MQEV responds with just a single response. So, the question then is which one does it choose ?
Well, the only natural choice would be the latest event of course, MQEV always will return the latest events which
match the display criteria in reverse chronological order. In other words the latest event will be the first one
returned7.

The second generic way that we can reduce the amount of data returned is to specify the time range of events you
are interested in. By default MQEV will return events received in the last 24 hours. So, if you want to see events
that were received older than that we need to add something to our command.

We can issue a command such as this :

DISPLAY EVENTS(*) FROM(8) TO(9)

Here we are saying that we want to see events created between 8am and 9am. We could say this another way:

DISPLAY EVENTS(*) FROM(8) TO(+1hour)

Both of these commands say the same thing. In one case we are using absolute times and in the second case we are
using a relative time. We can even say this:

DISPLAY EVENTS(*) FROM(-1hour) TO(9)

We can also use the term now to refer to the current time.

DISPLAY EVENTS(*) FROM(-4hour) TO(now)

However, 'now' is the default so this is the same as saying

DISPLAY EVENTS(*) FROM(-4hour)

which tells MQEV to return events generated in the last 4 hours.

Of course the absolute and relative time formats can be more specific. You can specify the date and minutes and
seconds if you so wish. For more information please refer to DISPLAY EVENTS on page 123. Of course limiting
the number of events in this way only partially solves the problem. If we have thousands of events we may still be
looking for a needle in a haystack. So, how else can we limit the information returned?

7 Events are sorted internally in timestamp order. However, it is entirely possible that two events have the same timestamp in
which case the order returned is the order that MQEV processed the message. If the events arrived on different queues
then essentially it is random as to which event is 'seen' first by MQEV.

Page 24

MQEV User Guide – Version 9.4.1

A simple trick is to issue a command such as:

DISPLAY EVENTS(*) ?

This command fails of course but it now tells us the command syntax.

AMQ8427: Valid syntax for the MQEV command:
 DISPLAY EVENTS(wildcarded_stream_name)
 [EVQMGR(wildcarded_qmgr_name)]
 [DISPCMDS(HIDE | SHOW)]
 [DISTYPE(DETAIL | CONDENSE | SUMMARY | MINIMUM)]
 [EVENTID(event_id)]
 [EVOBJNAME(wildcarded_object_name)]
 [EVOBJTYPE(object_type)]
 [EVREASON(CONFIG | CFGCHGOBJ |..]
 [EVTYPE(AUTHOR | CHANNEL | COMMAND | CONFIG | INHIBIT ...]
 [EVUSERID(wildcarded_userid)]
 [FROM(absolute_time | relative_time)]
 [TO(absolute_time | relative_time)]
 [TZ(timezone_bias)]
 [MAXRESP(number_responses)]
 [WHERE(filter_expression)]
 [{ [attribute] ... }] [ALL]

We can see that we can also limit the events return by Queue Manager, by Event Reason, Event Type, Userid,
Object Name and Object Type. In the case of string fields then you can use wildcards where '*' represents 0 to any
characters and '?' represents a single character. For example:

DISPLAY EVENTS(*) EVOBJNAME(*PROD*)

This would display any events which were related to any object which had 'PROD' somewhere in the object name.
If you want to get even more specific then you can use the power of the WHERE() clause. Those of you familiar
with IBM MQ will already know about the WHERE() clause however the MQEV WHERE() clause is a little
different. The concept is much the same, it allows you to filter responses based on fields within the event. However,
the standard MQ WHERE() clause is very limiting. For example it will only allow you to use a single attribute. The
MQEV WHERE() clause is far less restrictive.

For example, you can issue a command such as the following:

DISPLAY EVENTS(*) WHERE(MAXDEPTH = 5000 & MAXMSGL >= 4194304)

There is no limit to the complexity of your WHERE() clause. For a fuller description of the WHERE() clause please
refer to Chapter 10 Where Clause() on page 55.

Now, let's generate a different event message just to see what it looks like. Let's change the queue definition we
created. Issue the following command to your Queue Manager:

ALTER QL(MQEV.TEST.QUEUE) MAXMSGL(4000000) DEFPSIST(YES)

This will, of course, generate a new command event and a new configuration event.

Page 25

MQEV User Guide – Version 9.4.1

Let's display them using the following command:

DISPLAY EVENTS(*) DISTYPE(DETAIL) MAXRESP(2)

...and we would see output such as this:

EVQMGR(MQG1) EVENTS($EVENTS) EVTIME(2019-10-09 22:26:38 (Local))
EVREASON(CFGCHGOBJ) EVUSERID(mqgemusr) EVOBJNAME(MQEV.TEST.QUEUE)
EVOBJTYPE(QUEUE) EVENTID(00000006)
SUMMARY(Config - Change Object - Queue:MQEV.TEST.QUEUE - DEFPSIST[NO -> YES]
MAXMSGL[4194304 -> 4000000])
__
EVQMGR(MQG1) EVENTS($EVENTS) EVTIME(2019-10-09 22:26:38 (Local))
EVREASON(CMDCHGQ) EVUSERID(mqgemusr) EVOBJNAME(MQEV.TEST.QUEUE)
EVOBJTYPE(QUEUE) EVENTID(00000005)
SUMMARY(Command - Change Queue – Queue:MQEV.TEST.QUEUE)
__
Total display responses - Received:2

We can see that MQEV has done a pretty good job at summarising the change for us. Both changes are clearly
shown in the SUMMARY field of the change object event. Of course there is a limit to how much can be shown in this
field since it has a maximum length but it certainly gives a pretty clear indication of what went on. Of course if we
want to see the entire message then we can do so by changing the detail. Try issuing the following command:

DISPLAY EVENTS(*) ALL MAXRESP(1)

The addition of the MAXRESP(1) field tell MQEV to only return one event – the latest one. In this case it is the
change object we are interested in. Of course we can not guarantee that – MQ may have sent the last two events to
us in any order and since they are put to two different queues they could have been processed in a different order.
And, naturally, IBM MQ could have generated further messages since we issued the ALTER QL command. So, how
are we supposed to view a particular event and not have to care whether the event data is changing underneath us?

Page 26

MQEV User Guide – Version 9.4.1

Well, as you may have imagined it is the EVENTID field which is what we need. The combination of Event Queue
Manager, Stream Name and Event Id is always guaranteed to be unique. So, if we need to see the first event in
more detail we can issue the command:

DISPLAY EVENTS($EVENTS) EVQMGR(MQG1) EVENTID(00000006) ALL

This will show us the entire event such as the following

EVQMGR(MQG1) EVENTS($EVENTS) EVTIME(2019-10-09 22:26:38 (Local))
EVREASON(CFGCHGOBJ) EVTYPE(CONFIG) EVUSERID(mqgemusr)
EVOBJNAME(MQEV.TEST.QUEUE) EVOBJTYPE(QUEUE) EVENTID(00000006)
CFHCMD(43) CFHREASON(2368)
SUMMARY(Config - Change Object - Queue:MQEV.TEST.QUEUE - DEFPSIST[NO -> YES]
MAXMSGL[4194304 -> 4000000])
BEFORE:
EVENTUSER(mqgemusr)
EVSID(1D010105000000000005150000001AFA5FFE70975006C3A1C633E9030000000000000000000
00000)
EVORIGIN(MSG)
EVACCTTK(160105150000001AFA5FFE70975006C3A1C633E903000000000000000000000B)
EVAPPLID() EVAPPLTYPE(WINDOWSNT)
EVAPPLNAME(d:\nttools\mqscx.exe) EVAPPLORIG() OBJTYPE(QUEUE)
QUEUE(MQEV.TEST.QUEUE) DESCR() PROCESS()
BOQNAME() INITQ() TRIGDATA() CLUSCHL()
CUSTOM() CLUSTER() CLUSNL() CRDATE(2019-10-08)
CRTIME(09.50.37) ALTDATE(2019-10-08) ALTTIME(10.06.11) GET(ENABLED)
PUT(ENABLED) DEFPRTY(0) DEFPSIST(NO) MAXDEPTH(5000)
MAXMSGL(4194304) BOTHRESH(0) SHARE(1) DEFSOPT(SHARED)
HARDENBO(1) MSGDLVSQ(PRIORITY) RETINTVL(999999999) USAGE(NORMAL)
TRIGCTL(NOTRIGGER) TRIGTYPE(FIRST) TRIGDEPTH(1) TRIGMPRI(0)
QDEPTHHI(80) QDEPTHLO(20) QDPMAXEV(ENABLED) QDPHIEV(DISABLED)
QDPLOEV(DISABLED) QSVCINT(999999999) QSVCIEV(DISABLED) DISTL(NO)
NPMCLASS(NORMAL) STATQ(QMGR) ACCTQ(QMGR) MONQ(HIGH)
SCOPE(QMGR) DEFBIND(OPEN) CLWLRANK(0) CLWLPRTY(0)
CLWLUSEQ(QMGR) DEFPRESP(SYNC) DEFREADA(NO) PROPCTL(COMPAT)
IMGRCOVQ(QMGR) DEFTYPE(PREDEFINED) QTYPE(QLOCAL)
AFTER:
ALTDATE(2019-10-08) ALTTIME(10.32.38) DEFPSIST(YES) MAXMSGL(4000000)
Total display responses - Received:1

This is a lot of information to deal with but essentially it is split into three parts. The first part is largely event
elements we are already familiar with. This is followed by a 'BEFORE' section. This lists the values of the object
fields before the change was made. This in turn is followed by an 'AFTER' section and it is here that the event tells
us what was changed and their new values.

As we mentioned before, in order to do this MQEV has received two different event messages, compared them and
constructed this single event to show the differences.

Page 27

MQEV User Guide – Version 9.4.1

3.6 Displaying MQEV in a GUI (MO71)
Even if you have not installed MQSCX it is recommended that you read the section “Displaying MQEV in a
command line (MQSCX)“ since it introduces some of the MQEV concepts. Command utilities like MQSCX are
great for automated tasks or for running sets of pre-canned commands. However, for day-to-day monitoring of
MQEV data it is far easier to use a GUI.

MO71 is MQGem Software's GUI Administrator which can issue commands to IBM MQ queue managers as well
as a variety of other tasks. It is no surprise then that you can also issue MQEV commands. By selecting a Queue
Manager and bringing up the command context menu you should new menus associated with MQEV. If you use
menu categories then these will be under two new Categories see two new menus Categories

• MQEV Events
These contain the operations associated with MQ Events and general operation of MQEV.

• MQEV Acct & Stat
These contain operations associated with just Accounting and Statistics data.

So, if we select 'MQ Event List...' from the MQEV Events category we will be presented with a list dialog. Pressing
“Refresh” on this menu will show us the same data as we saw in MQSCX for our two events but this time in a
GUI.

As you might expect the operation of this dialog is largely the same as any other MO71 dialogs. If you are not
familiar with MO71 then we strongly suggest you read the MO71 manual from cover to cover. It contains lots of
information about powerful features in MO71.

Perhaps one thing that users of MO71 won't immediately recognise is the format of the 'Date Range' field. As you
know, when querying MQEV Events one of the key ways to limit the information you are shown is to specify a
range of dates/times you are interested in. You can do this in different ways. By specifying both ends of the date
range or specifying just one end and an elapsed length of time. For example, if you look at the dialog you will see
that by default it will show you events in the last 24 hours. This is indicated by the 'Now' button being selected –
which means that events up until 'now' will be selected. The 'For' field is also selected with a value of 1 day. So, we
have a selection of “a days worth of events up until now”. Each time the 'Refresh' button is pressed the greyed out
values will be changed to indicate the effective value used on the command.

Page 28

MQEV User Guide – Version 9.4.1

Of course all of these fields can be changed. By selecting or deselecting the buttons you can enable the data fields
themselves and set whatever value you wish. To change a value just select the required field, you will see a bar
above and below the field indicating it has focus. It is then merely a question of using the mouse wheel, clicking on
the bars or using the up and down arrow keys to select the value you want. Pressing right and left arrow keys will
move through the date elements.

Of course we can look at an individual event in more detail by double-clicking on it. So let's do that now on the
configuration create object event. You would get something like this:

Here we can see this event in more detail. It looks quite similar to a normal Queue dialog and that is no accident. A
configuration dialog is essentially a representation of the object that was created and what better way to show it
than a dialog that looks very similar to the dialog you would have used in MO71.

Of course the exact look of each event will be different. MQ issues a large variety of event messages, each
containing different fields, so naturally the dialog to view them is necessarily different. However, all events will
have a common set of values shown on the first tab. Whether subsequent tabs are included depends on the event in
question.

Page 29

MQEV User Guide – Version 9.4.1

Let's take a look at the other configuration we created, the change object event.

Double click on that list entry and cycle through the tabs on the resultant dialog.

You can see that there is a striking difference between this dialog and the previous one we looked at.

Here we see the dialog fields essentially split into two sections. I am sure you don't need me to tell you that what
we are seeing here is the 'before' and 'after' values. In other words the values shown on the right, highlighted in
yellow8, were the changes that were made that the event is reporting about.

8 You can of course change the highlight colour in the colour choose dialog

Page 30

MQEV User Guide – Version 9.4.1

3.7 Testing with other events
We have used command and configuration events for this walk-through to introduce you to viewing event messages
in MQEV because they are very simple to generate; turn them on, issue any command, and there you have an event
message. Other event messages are not always so simple to generate.

Therefore, if you would like to have some event messages to use to get to know MQEV, we have provided a set of
event messages in a QLOAD file that you can simply load onto one of your IBM MQ event queues that MQEV is
processing, and then display them through MQEV, either with MQSCX or MO71 as shown in the previous
sections.

There is a file called TestEventMsgs.qld which can be found in the same zip/tar file as the executable. To load it
onto an event queue, say SYSTEM.ADMIN.COMMAND.EVENT (since you are already set up with MQEV processing
that queue), run the following command:-

qload -m MQG1 -o SYSTEM.ADMIN.COMMAND.EVENT -f TestEventMsgs.qld -CI

If you're not a QLOAD licensee, you can, in this case, use dmpmqmsg with the same parameters.

Of course this assumes that you have the authority to put messages to the SYSTEM.ADMIN.COMMAND.EVENT
queue on your system. If you don't have this authority, you could instead use the following steps.

DEFINE QLOCAL(LOADED.EVENTS)

Now load the events messages onto your newly created queue

qload -m MQG1 -o LOADED.EVENTS -f TestEventMsgs.qld -CI

Now tell MQEV to process this queue.

=mqev
ADD EVQ(LOADED.EVENTS)
RESUME EVQ(LOADED.EVENTS)

Now you will have a large number of events to work with and try out the various commands, for example:-

DISPLAY EVENTS(*)

Page 31

MQEV User Guide – Version 9.4.1

4 Parameters
MQEV supports the following parameters:

Parameter Effect

-b Background Mode

MQEV will not output status lines to stdout nor attempt to read characters
from stdin.

When initially getting going with MQEV, running in foreground mode can
be useful, and then later, once your log files are where you expect them to
go, using background mode would be appropriate.

-c <Maximum Command Level> By default MQEV will not run against Queue Managers which are beyond
a command level it understands. This is to ensure that any generated events
are understood. However, the user can override this behaviour by explicitly
specifying the supported command level.

This parameter can be used to both increase or reduce the supported
command level. You could, for example, reduce the supported command
level if you knew that your script functions do not yet support later
command levels.

-f <Script File> Location of script file if not the default mqev.mqx in the default location.
File can be specified as just a path, just a file name, or both depending on
what you wish to override.

If not specified on z/OS, MQEV will attempt to open DD card MQEVMQX.
Whether specified using the –f flag or the DD card, this can reference a
PDS member, a sequential data set, a UNIX file, or just a UNIX file system
directory (in which case the default file name mqev.mqx will be used).

-k An indication that MQEV is running as an IBM MQ Service. This will have
the following effect:

• MQEV will run in background mode
• MQEV will not retry the connection if it detects that the 'service'

Queue Manager is ending. The 'service' Queue Manager will be the
Queue Manager that MQEV is defined as a service of.

-l Make a client connection to the monitored Queue Manager

Note that a State Queue Manager, if used, will always use a bindings
connection.

This parameter does not apply when the program is running on z/OS. You
can of course connect to a z/OS queue manager using this parameter when
the program is running on a platform other than z/OS.

-L <Log Path> Directory to store the MQEV logs if you wish to override the default
location.

On z/OS this can specify a Partitioned Data Set (PSDE) or a UNIX file
system directory.

For full details of how to over-ride the default location of the MQEV log
files, see Chapter 9 Logging on page 54.

-m <Queue Manager> Specify the name of the queue manger to connect to if not the default.

Page 32

MQEV User Guide – Version 9.4.1

Parameter Effect

-o <Option> This flag allows you to change a number of the operational characteristics
of MQEV. Options which are just a single flag can be specified in a single
parameter, for example, -oATS. However, flags which have a value should
be specified in their own -o flag.

The supported values are:

Flag Meaning

A Tells MQEV not to suppress Accounting and Statistics
recording for it's MQ connection.
Example: -oA

c<value> Sets the Maximum Absorb Check Frequency in seconds.
(seconds)
Example: -oc15
Default: 10 seconds

g<value> Sets the Absorb Grace Period in seconds.
Example: -og60
Default: 15 seconds

r<value> COPY STREAM report interval.
Default:2 seconds.

s<value> Sets the Absorb Sweep Period in seconds.
Example: -os20
Default: 10 seconds

S Disables the Absorb feature
Example: -oS

T Tells MQEV not to suppress activity trace tracking on it's MQ
connection.
Example: -oT

-p <Model Reply Queue Prefix> Specify the Reply Queue Prefix you would like MQEV to use if you don't
want the default of MQEV.*

-q <Reply Queue Name> Specify the Model Reply Queue you would like MQEV to use if you don't
want the default of SYSTEM.DEFAULT.MODEL.QUEUE

Page 33

MQEV User Guide – Version 9.4.1

Parameter Effect

-r <Retry Scheme> This parameter controls how frequently MQEV will attempt to connect to a
Queue Manager. This retry will occur when the initial connection attempt is
made and also if that connection is subsequently lost. Note that not all
failures are retryable. MQEV will not retry, for example, if it finds it's
command queue missing.

The retry settings are in two stages. A short retry interval and count and a
long retry interval and count. Very similar to IBM MQ Channels. You can
specify any values you wish but the following values are predefined:

Name Short Interval Short Count Long Interval Long Count

low 120 5 600 999999999

default 60 10 300 999999999

high 10 60 60 999999999

none 0 0 0 0

So, a parameter of -r high will ask MQEV to do a high rate of retry which
is 60 attempts 10 seconds apart and then falling back to retrying every 60
seconds forever.

If you don't want to use the predefined values then you can specify your
own values using a command such as: -r 10(20),120(999999999)
Each part of the specification is optional and the missing value will be taken
from the default values above. So, the parameter -r 10(20),120 will have the
same effect.

-s <State Queue Manager> The Queue Manager where the persistent state queue is held.

It is recommended that you use this option if you are connecting to your
monitored Queue Manager over a client connection so that all the MQEV
state is kept local to the MQEV program.

-u <User Id> The user identifier to be used for the MQ Connection.

The parameter will apply to the preceding -m or -s parameter

-U <Password> The password to be used for the MQ Connection.

The parameter will apply to the preceding -m or -s parameter

Page 34

MQEV User Guide – Version 9.4.1

Parameter Effect

-v <Verbose options> Verbose options tell MQEV to output extra information to it's main
window. Normally they are not used but they can be useful to diagnose
certain situations.

'c' – Print compression statistics

'd' – Print PCF details

'h' – Print hardening activity

'l' – Print log file access

'm' – Print output machine information (useful for licences)

'P' – Print compressed PCF

'p' – Print source PCF

'r' – Print retry values

's' – Print storage statistics

'S' – Print stream statistics

't' - Print display time values

'T' – Print event storm diagnostics

-! Run MQEV in debug mode. For more information about debugging please
refer to Chapter 18 Debugging on page 207.

Page 35

MQEV User Guide – Version 9.4.1

5 Streams
MQEV allows the user to split the incoming events into streams. Streams are just an administrative aid which
allows the events to be grouped. This could be shown in the following diagram:

Depending on the type of message they will go to different streams by default.

Type of Message Default Stream Default Retention Interval

MQ Event $EVENTS 90 days

MQ Statistics Queue $STATQ 45 days

MQ Statistics Channel $STATCHL 45 days

MQ Statistics MQI $STATMQI 45 days

MQ Accounting Queue $ACCTQ 45 days

MQ Accounting MQI $ACCTMQI 45 days

These are the defaults. However, you could choose, for example that you would like to group all of your
authorisation failures into a security stream. Or you might decide that you would like to split the streams by
application groups. The choice is entirely up to you; whatever makes sense for your installation.

So, why would you want to split the streams? Well there are three main reasons. The first is the retention level.
Each stream can have a separately configured retention interval. As you can see by default the $EVENTS stream has
a retention interval of 90 days. The assumption is that after 3 months the event information is of little use.
However, you might decide that there are certain types of events you want to keep for longer, or shorter.

The second reason is that it can be a useful administrative grouping. You can DISPLAY or PURGE streams by stream
name. For example the command:

DISPLAY EVENTS(SECURITY)

would only show you events stored in your security stream. Always assuming, of course, that you had named it
SECURITY. Any stream can be identified as the 'default' stream i.e. the stream that should be used by default for
that type of data. You can, of course, have only one stream identified as the default for each type of message.

Page 36

MQEV User Guide – Version 9.4.1

The third reason is that you are using Aggregation (described on page 39). This allows you to put the same data on
multiple streams which have different characteristics.

5.1 Directing events to a stream
So, how do you configure certain events to go to certain streams? Well, here we need to put our programmers hat
on but don't worry it is very simple. When MQEV receives an event it will always call the MQEVEvent() function
in your script file. During the processing of that function all you need to do is set the system variable _stream to
the name of the stream (or streams) you wish to use. So, in it's simplest form we could code this:

func MQEVEvent()
 _stream = "SECURITY"
endfunc

Of course this would mean that all event messages would be sent to the security stream. Probably not what we
want. So, we would modify the code to check what the event being processed is, perhaps something like this:

func MQEVEvent()
 if (event.evtype = AUTHOR)
 _stream = "SECURITY"
 endif
endfunc

This tells MQEV that any authorisation events should be sent to the SECURITY stream. Of course the beauty of
having this type of processing in a script rather than in a configuration file is that it is totally flexible. You can
choose how events are distributed amongst your streams. It could be by event type, by application group, by
'seriousness', by object name9 or even day of the week if you so wish! It is not necessary for the stream to already
be defined, streams will be created as required and are known as auto-generated streams.

5.2 Directing accounting and statistics messages
It is also possible to do a similar thing with accounting and statistics messages, however there is an operating
difference in that many of the accounting and statistics messages contain data for multiple different objects in the
same message. It is therefore not possible to direct these messages to a stream by object name. However, it may
still be useful to direct the stream used based on other criteria, such as the application name, the time of day, or
certain criteria that make the data interesting in some way.

For Accounting and Statistics data it may even be appropriate to put the data to multiple streams. This can easily be
achieved with a comma separated list of stream name such as the following:

func MQEVAcctQ()
 _stream = "$ACCTQ, ACCTQAGGR, ACCTQAGGRLO"
endfunc

One of the main reasons you might want to do this is described in Chapter 6 Aggregation on page 39.

As before, in the Event example, we can make our script more specific. In the function example below we initially
assume that we will discard this message, by setting the stream name to "$null". We then look for interesting data
– higher volumes of puts and gets than expected in this example, and set the stream name accordingly. The
complete queue accounting message is then stored on the nominated stream. Remember that, at any time, we can
return a comma separated list of stream names if we wish and the data will be put to all of them.

9 It is not recommended that you have too many streams. A stream is the unit of expiry and consolidation. Having many
streams means that the events do not fill up the stream messages quite so quickly. This means that there can be more 'dead'
information which can not yet be discarded.

Page 37

MQEV User Guide – Version 9.4.1

func MQEVAcctQ()
 **
 * Initially assume we plan to discard this message (set null stream)*
 **
 if (_idxData = 1)
 _stream = "$null"
 endif

 **
 * Save this message to our high volume stream if numbers are large *
 **
 @allput = data.PUTNP + data.PUTP + data.PUT1NP + data.PUT1P
 if (@allput > 10000 AND (data.GETP + data.GETNP) < @allput/2)
 _stream = "HIGH.VOLUME"
 endif
endfunc

5.3 Auto-generated streams
Auto-generated streams are streams that come into existence because their name is returned in the _stream system
variable rather than they were explicitly created using the DEFINE EVSTREAM command. Since they are auto
generated MQEV has to obtain their values from somewhere. The key values used are shown in the table below:

Field Value Source

Aggregation Interval Zero.
Aggregation is switched off. If aggregation is required pre-define the stream.

Default Stream No

Display Implicit Yes if this is a system stream, No otherwise.

Emit None

Retention Interval Retention Interval value from default stream of same type if it exists

 or...
 90 days for an Event stream.
 45 days for an Accounting & Statistics stream.

Page 38

MQEV User Guide – Version 9.4.1

6 Aggregation

6.1 Purpose
Aggregation only applies to Accounting and Statistics messages, it's purpose is to reduce the amount of data which
is stored without sacrificing, too much, the usefulness of the information. There are two main reasons why you
would want to use aggregation:

1. You are getting Accounting and Statistics messages very frequently, far more frequently than
meaningful
We would probably all agree that, in most cases, there is little point in storing more than one record per
second for any one application. Is there really any point in storing more than one record per minute?

2. You wish to have a long history of data and are therefore willing to sacrifice resolution.
Suppose you have configured IBM MQ to give you a statistics record once every 30 minutes. Suppose you
also have 1,000 queues. That is, possibly, 17,520,000 records per year. However, it may well be that, for
historical reasons, you only actually need one statistics record daily. You could tell MQEV to aggregate the
data daily and therefore store around 50 years worth of data in the same space that you previously stored a
single year. Note that an Accounting or Statistics record can be put to as many streams as you like. So, you
don't have to decide whether you want high resolution, short history or low resolution, long history. Instead
you can put the data to both streams and have both. Please see the Multiple Streams discussion below for
details.

6.2 Concept
If duly configured MQEV will catch and store each Accounting and Statistics record given by IBM MQ. Each item
will be stored separately. This could mean the storing of millions of records. While MQEV is quite capable of
doing this there is, of course, a price to pay in both performance and storage and very often it is not necessary from
a requirements standpoint.

Let us suppose we want to collect Accounting Queue messages. Essentially we want to see 'who did what to which
queues'. On the face of it we can just configure MQ to send Accounting records at the ACCTINT frequency. This is
a Queue Manager attribute and defaults to 1800 seconds (half an hour). So, one might imagine that you would get,
at most, 48 records per application per day. However, as is so often the case, it is not quite as simple as that. IBM
MQ will also write an Accounting Queue record when the application disconnects. Sadly, despite best practices to
the contrary, many MQ connections are fairly short-lived. As a consequence IBM MQ can often generate many
Accounting records a second rather than a few every 30 minutes.

What we need is a way of combining all the Accounting records for a particular individual over a period of time
and this is what Aggregation is. Aggregation is enabled by means of a single attribute, AGGRINT,on a stream that
specifies that all records arriving for the 'same thing' in the same interval should be combined.

So, suppose we set our AGGRINT to a value of 3600 (1 hour). This means that all records, for the 'same thing',
arriving in the same hour will be combined. Let us explain these three concepts a bit more.

6.2.1 Interval
The collection intervals are controlled by the AGGRINT value. The origin of all intervals is mid-night from the
perspective of MQEV itself10. So, an AGGRINT of 3600 will collect data in intervals 0-1am, 1am-2am, 2am-3am etc
etc An AGGRINT of 4 hours (or 14400) will collect in intervals of 00:00-04:00, 04:00-08:00, 08:00-12:00 etc.

It perhaps follows that the AGGRINT value must be a factor of the day or hour. You can not, for example, collect
your data in intervals of 7 minutes. But then again why would you want to unless you are the type of person who
never gets invited to parties.

10 Remember that MQEV should be running in the same time-zone as the Queue Managers it is monitoring so this statement
should also imply that Aggregation is done from the origin of mid-night at the Queue Manager.

Page 39

MQEV User Guide – Version 9.4.1

Clearly the longer the interval the less data will need to be stored but also the less resolution you will have on the
data. For example, using the raw data you can tell when an application connected to within the second. However, if
you have an AGGRINT of 1 hour then that is no longer guaranteed and all you will know is the first and last time,
within each hour interval, that the application connected.

6.2.2 'Same thing'
Clearly within any one interval we do not want to combine every record into just a single record. Instead we
effectively have a 'key' which must match in order for the record to be considered reporting on the same thing. This
'key' is different depending on the type of record being received. The record keys are given below:

Record Type Key Fields which must match

Accounting Queue Queue Name
Queue Type
Application Name
User Id
Channel Name
Connection Name

Accounting MQI Application Name
User Id
Channel Name
Connection Name

Statistics Queue Queue Name
Queue Type

Statistics MQI None

Statistics Channel Channel Name
Channel Type
Remote Queue Manager
Connection Name

As a consequence these values are guaranteed to be unique in any aggregated record.

6.2.3 Combination
When multiple records are combined then a policy must exist about how that field is combined. The policy will
depend on the field type. The way these fields are combined matches the way a DISPLAY command using
SUM(something) will combine them.

Field Type Value shown in combined record

Start and End Interval The extremes value of each field

Key Fields Not combined so will show original value

Minimum fields Will contain the minimum value of any record.

Maximum fields Will contain the maximum value of any record

Counts fields Fields such as 'PUT' or 'PUTBYTE' will contain the total value from all records.

Subkey values Subkey values are fields will identify an aspect of the record but are not themselves
considered a key since they can change over time. For example, Open Time
(OPENTI) or Process Identifier (PID). If all records contain the same value then
that value will be shown. However, if there is at least one record with a different
value then '*' will be returned indicating 'multiple values'.

Page 40

MQEV User Guide – Version 9.4.1

6.3 Multiple Streams
If you only wish to aggregate the standard streams then it is simply a matter of defining the AGGRINT value that is
required on that stream. However, it is entirely possible that you want the same data to be stored on two or three
streams. The reason for this is because you would like high-resolution data held, for say, one week. Medium
resolution data held for 90 days and low resolution data held for 3 years.

So, how would we achieve this? Let's assume that it is Accounting Queue that we are interested in. We would first
define our two extra streams with the following:

DEF EVSTREAM(ACCTQAGGR) TYPE(ACCTQ) AGGRINT(3600) RETINTVL(90) REPLACE
DEF EVSTREAM(ACCTQAGGRLO) TYPE(ACCTQ) AGGRINT(86400) RETINTVL(1095) REPLACE

These two commands define two streams capable of holding Accounting Queue data. The first one declares an
aggregation interval of 3600 seconds (or 1 hour) and says the data should be kept for 90 days. The second one asks
for the data to be aggregated on a daily basis but it is kept for 3 years. Of course the values you choose could be
wildly different from these, this is purely an example, However it does demonstrate the power of aggregation. Even
though the second stream is clearly held for a lot longer it potentially stores less data since there are less intervals in
the storage period. Of course determining the exact amount of storage that will be used will depend on a lot of
factors, such as the number of queues and the frequency of the records, but you get the idea.

So, now we have our two additional streams. How do we get MQEV to actually put the records on these streams?
Well, there are two aspects to this. First, do we want the data we have on our current $ACTTQ stream to be
reflected in these aggregated streams. Secondly, we want all new data to be put to the three streams.

In most case we will want our current data to be contained in the new streams so we would do the following:

1. Suspend any queues which may try to put new data to the ACCTQ stream
SUSPEND EVQ(SYSTEM.ADMIN.ACCOUNTING.QUEUE)

2. Now we want to copy the existing data to the two new streams

COPY EVSTRMST($ACCTQ) TARGET(ACCTQAGGR)
COPY EVSTRMST($ACCTQ) TARGET(ACCTQAGGRLO)

Bear in mind that if there is a large amount of data on your stream then this may take some time. MQEV
will send regular progress messages back to the command terminal to tell you how far through the copy
had got and how long it is expected to take. Please see COPY EVSTRMST for the full description of this
command.

Once we have done whatever copies we want then we can tell MQEV to start putting new data to these new
streams. To do that all we need to do is make a small change to our script file.

func MQEVAcctQ()
 _stream = "$ACCTQ, ACCTQAGGR, ACCTQAGGRLO"
endfunc

As you may recall there is a dedicated function in your script file for each data type. In this case we are interested
in MQEVAcctQ which will get called for each Accounting Queue record. All we need do is set the system variable
_stream to a comma-separated list of stream names we want this data to be added to. In this case we are just
keeping thing simple and putting all records to all three streams. However, we could, if we wished be more
selective and only put certain records to certain streams. For example, we could, if we wished, not bother putting
any test queues (those starting TST.) to the longer lived streams. Or perhaps you have different application groups
wanting different strategies. It is infinitely flexible.

In order for MQEV to start using the new script instructions we will need to stop and start MQEV. Lastly we need
to resume our queues to start reading the new data. In this case, issue the command
RESUME EVQ(SYSTEM.ADMIN.ACCOUNTING.QUEUE)

Page 41

MQEV User Guide – Version 9.4.1

6.4 Displaying
Aggregated data is immediately displayable via the normal DISPLAY commands. It is not necessary to wait until
the end of the interval. One should be aware therefore that the last interval may only show results for a partial
interval.

The other concept to be aware of is the notion of implicit display. Consider the example above where the same data
has been put to three different streams, albeit with different combinations. How do we avoid displaying the data
multiple times? I think we all understand what the output of the following commands would be:

DISPLAY ACCTQ(*) EVSTREAM($ACCTQ)
DISPLAY ACCTQ(*) EVSTREAM(ACCTQAGGR)
DISPLAY ACCTQ(*) EVSTREAM(ACCTQAGGRLO)

In these commands we are being very specific about which stream we want the data from so it is clear what is
needed. However, suppose we issued the command:

DISPLAY ACCTQ(*)

In this case what should we display? Well, very rarely, if ever, would we want to see the combination of all streams
so that wouldn't be sensible. Instead we have the concept of 'Display Implicit', or DISIMPLCT, on a stream
definition. By default this is 'Yes' for the default streams but 'No' for any other streams of that type. What it
essentially means is 'should the data from this stream be returned if not explicitly matched in the command?'.

Again it is not quite as simple as that. The following command....

DISPLAY ACCTQ(*) EVSTREAM(*)

is treated as though the EVSTREAM parameter was not mentioned. In other words it will only return data from
implicit streams. If you really, really wanted to see the data combined from all your streams, to satisfy some morbid
curiosity, that quite frankly should be sated by a good science fiction novel, then you can see the data with the
following command:

DISPLAY ACCTQ(*) EVSTREAM(**)

In fact any command that matches all three names would do it. Just not the single '*' which is considered to mean
'give me the normal set of data'. However, you must be aware that this may well display data that is double
accounted. In our example above it will be triple accounted and MQEV will not warn you that this is happening, at
least not at this time. What MQEV considers a more heinous crime is to actually put the data to two or more
streams that defined as default implicit. To that end MQEV will issue an alert, and error message, should the
mqev.mqx script try to set the _stream variable such that MQEV would try to put a record to more than one
display implicit stream.

6.5 Emitters
An emitter defined on a stream that is aggregating will do the emit only when the aggregation interval ends. If you
wish to emit data immediately while still retaining the aggregation then you should direct the data to two streams –
one with the defined emitter and short retention interval and the other that does the aggregation and has a relatively
long retention interval.

Emitters will not be invoked during the copy operation.

Page 42

MQEV User Guide – Version 9.4.1

6.6 Operation
For the most part you need not concern yourself with the actual operation of Aggregation. However, for those
interested, perhaps the bit-twiddlers amongst you, we will talk about it's basic operation here to give you an idea of
what it going on.

When MQEV receives data to be stored on to a stream which has an aggregation interval it will not immediately
put the data to that stream. Instead the data is kept in an in-memory list of data records. Don't worry though, the
data is still hardened as we'll see in the Storage section below. These records are indexed according to the type of
record using the key fields mentioned in the 'Same thing' table above. Additional data can be added to these data
structures at least until the end of the aggregation interval. MQEV will not close the interval immediately though.
It will keep the interval open for an additional 'grace period'. This grace period allows for data to arrive a few
seconds later. Consider the case where you want to aggregate everything hourly. Something that happens in the
Queue Manager at 59 minutes and 59 seconds may not arrive at MQEV until a little past the hour so this grace
period allows the data to be captured. Note that we are not extending the interval here, just the amount of time we
are will to received data. So, if we received data that belonged in the next interval it would clearly be added to the
next interval. It follows therefore that there could be more than one interval, in fact any number of intervals, which
are active at any one time.

6.6.1 Absorption
When an aggregated record does finally get closed after the grace period and written to the actual stream data then
this is called Absorption. Unabsorbed data is still displayable using the standard DISPLAY verbs so, in this regard,
the grace period has little effect. Where it does make a significant difference is in emitters. MQEV will not emit an
aggregated record until it is considered 'complete' – which will include the grace period. It follows therefore that if
you have a very large grace period there will be significant delay before your data is emitted.

The normal mechanism for MQEV to look for completed aggregation intervals is when it receives a command or
record data of some sort. However, it is possible that MQEV will receive neither of these for an extended period of
time so MQEV also has the concept of 'sweeping up' completed intervals after a period of inactivity.

By default MQEV will use the following default values:

Setting Default Value

Absorb Check Frequency 10 seconds

Absorb Grace Period 15 seconds

Absorb Sweep Interval 10 seconds

6.6.2 Storage
An absorbed Aggregated record is just like any other record on the stream. However, unabsorbed Aggregation data
must be treated differently. The key difference is that normal stream data is unchanging, once written it stays as the
same data until it is eventually deleted because of the retention interval. Unabsorbed Aggregated data is quite
different, this data can be updated many times, perhaps even thousands of times, before finally solidifying. So, a
different scheme is needed for this data.

Unabsorbed Aggregated data is still stored on the normal data queue known as The Persistence Queue (this is
described on page 8) However, the data is stored in a different set of messages than the normal stream. These
messages are created and destroyed as required as records arrive and are then eventually absorbed. As a
consequence, when using aggregated intervals, it is entirely normal to see the depth of the data queue fluctuate. If
you have very large numbers of queues or large numbers of applications connecting and disconnecting then this
fluctuation can be significant.

You can, if you wish, display the number of messages on the data queue that are dedicated to the aggregation data
by looking at the AGGRMSGS attribute of the DISPLAY EVSTRMST command.

Page 43

MQEV User Guide – Version 9.4.1

7 Collation
Collation applies only to Accounting and Statistics data not Event data. It is a recognition that sometimes it is not
just 'when' something happened that is interesting but it is the pattern of when something happens that is
informative.

For example, how do we easily answer the question about “When is the busiest time of day for messaging?” Or
perhaps we want to know the least used time during the week so we can schedule maintenance. To more accurately
assess the answer we really need to look at the data spanning multiple time periods – and that is what collation is all
about. It essentially says “display the accounting data but collate the data into time buckets'. To specify the 'bucket'
you want data collated into you essentially need to give MQEV two pieces of information.

• The range of the buckets ie. cycling period.
This is essentially at what point do we start filling the first bucket again.

• The size of each bucket
For instance are we collecting daily numbers or hourly or something else.

So, let's suppose we want to collate the data to find out what happens on what day of the week. In this case the
'cycle' would be 1 week and the size of each bucket would be 1 day. So, the command to do this would be:

DISPLAY ACCTQ(*) COLLATE(WEEK1D) FROM(-90d)

Note that, if you don't specify a time range, then by default MQEV will return the last 24 hours worth of data.
Since we are trying to get a feeling for the messaging rates per day then we need to give it some history to work
with. So, in this case we ask for MQEV to draw on the last 90 days worth of data11.

The output of such a command might be something like the following:

TITLE(Monday) ALLPUT(12634) GET(21802)
TITLE(Wednesday) ALLPUT(33638) GET(52814)
TITLE(Thursday) ALLPUT(48772) GET(76733)
Total display responses - Received:3

Of course on a production system it is unlikely that we didn't put any messages on a Tuesday, this is just for
demonstration purposes. Mind you if this was the result of a production system query then I would certainly be
asking questions about what happened with Tuesday and whether there was a good game on! It is these kinds of
queries that may well show up interesting anomalies. Things that perhaps you weren't aware of. This can be even
more likely if your business spans multiple time-zones.

Anyway, so much for daily numbers, suppose we wish to find what happens during the day itself ie. We want to
find out when busiest hour or quietest hour might be. Then the 'range' would be 1 day and the size would be 1 hour.
So, in this case, the command would be:

DISPLAY ACCTQ(*) COLLATE(DAY1H) FROM(-90d)

This command would only show you the hours for which something happened in the attributes being displayed. If
you wish you can force MQEV to also send the other intervals. There are two ways of doing this.

DISPLAY ACCTQ(*) COLLATE(DAY1H) FROM(-90d) GAPFILL(FULL)

This tells MQEV to output just the intervals themselves with no actual data fields.

11 It doesn't really matter if we don't have a full 90 days of data to work with and MQEV will not complain if you don't have
that much built up already. However, clearly when we are looking for patterns, the more data we can work from the better.

Page 44

MQEV User Guide – Version 9.4.1

DISPLAY ACCTQ(*) COLLATE(DAY1H) FROM(-90d) ZEROVALS(SHOW)

This command tells MQEV to treat a zero value as significant so the data fields are all shown with the zero value.

Normally when displaying the data you would not want to use these options since they tend to obfuscate the actual
data lines. However, it can be useful to give greater time-spatial awareness (particular when there are not too many
intervals) and it is very useful if you wish to graph the resultant data since zero points on the graph are just as
telling as the non-zero points.

During the collation process the records themselves are summed in the same way as they would be in the DISPLAY
command itself or indeed Aggregation. So, it is easy to tell “how many messages were put on a Tuesday?” or “what
the average time a message spent on the queue between the hours of 2am and 4am?”. Bear in mind though that the
data is collated into a single record per bucket. You do not, for example, get a record per Application or per Queue
or whatever. If you wish to see only a portion of the data then you should use the filter fields on the DISPLAY
command or use a PREWHERE expression. It therefore follows that the COLLATE(WEEK1D) command above can
return a maximum of seven responses, one for each day. Likewise a COLLATE(DAY1H) can return a maximum of
24 responses.

One other word about collation is that it can only work with the data it has been given. If, for example, you have a
Statistics Interval of 1 hour there is little point asking MQEV to display the data and collate it into 5 minute
periods. The same is not quite so true of Accounting data since IBM MQ will also send Accounting records when
and application disconnects, not just when the Accounting interval is reached. However, the point still stands that
you can only display data that has been captured in the first place.

This is also true of Aggregation. If you are Aggregating the data into, say, hourly records it doesn't then make sense
to ask MQEV to collate the data into 15 minute intervals. In fact if you try this MQEV will report an error that you
are asking to collate the data with greater resolution than the stream was aggregated in. A similar, although not
quite as clear-cut, situation occurs if the collation and aggregation intervals are not multiples of each other.
Consider a situation where you have aggregated the data into 15 minute intervals. Now let's say you display the
data and ask for a collation of 10 minute intervals. MQEV can make a reasonable stab at an answer in this case but
you need to be aware that while some 10 minute intervals will fall squarely into an aggregation interval yet other 10
minute intervals will span two aggregation intervals. This can lead to potentially misleading results. As a
consequence MQEV will output a warning with the data suggesting that your intervals may not align.

7.1 TITLE and TITLEIDX
If you are collating records then the normal timestamps of a response record are replaced with a descriptive title.
For example, COLLATE(WEEK1D) will return records with titles of Monday, Tuesday, Wednesday etc However,
sometimes it will be a time range or just a period start time. The table below of Collate Types gives at least one
example Title for each collation type. If required the title can even be passed on input to the command to restrict the
responses return to just matching entries. This is primarily used to be able to grab just one response from the set.
However, you can use wildcards to return any matching record if you find a suitable pattern. If your selection is
complicated though then using a WHERE clause would be more appropriate.

The title should be easily understandable by the human reader. If, however, you want to write a script which
processes the collation responses then you can use the TITLEIDX response field. TITLEIDX is a one-based index to
the possible collation buckets. For example, in COLLATE(WEEK1D) Monday has TTILEIDX=1, Tuesday has
TITLEIDX=2 etc etc. Using this index it would be fairly easy to, for example, add the responses to an array or
write the data to a file or graph the data, perhaps giving your own titles.

Page 45

MQEV User Guide – Version 9.4.1

7.2 Types
The different types of collation that are supported are:

MQSC Keyword Cycle
Period Interval

Maximum
No. of

Responses
PCF Constant Example Title

WEEK1D 1 week 1 day 7 MQG_COLLATE_WEEK1D Monday

WEEK12H 1 week 12 hours 14 MQG_COLLATE_WEEK12H Mon 12:00

WEEK8H 1 week 8 hours 21 MQG_COLLATE_WEEK8H Mon 08:00

WEEK4H 1 week 4 hours 42 MQG_COLLATE_WEEK4H Mon 16:00

WEEK2H 1 week 2 hours 84 MQG_COLLATE_WEEK2H Mon 18:00

WEEK1H 1 week 1 hour 168 MQG_COLLATE_WEEK1H Mon 19:00

DAY12H 1 day 12 hours 2 MQG_COLLATE_DAY12H 00:00-12:00

DAY8H 1 day 8 hours 3 MQG_COLLATE_DAY8H 08:00-16:00

DAY4H 1 day 4 hours 6 MQG_COLLATE_DAY4H 16:00

DAY2H 1 day 2 hours 12 MQG_COLLATE_DAY2H 10:00

DAY1H 1 day 1 hour 24 MQG_COLLATE_DAY1H 15:00

DAY30M 1 day 30 minutes 48 MQG_COLLATE_DAY30M 13:30

DAY15M 1 day 15 minutes 96 MQG_COLLATE_DAY15M 17:45

DAY10M 1 day 10 minutes 144 MQG_COLLATE_DAY10M 16:50

DAY5M 1 day 5 minutes 288 MQG_COLLATE_DAY5M 02:25

DAY8H4 1 day 4am – 12am,
12 am – 8pm

8m - 4am

3 MQG_COLLATE_DAY8H4 04:00-12:00
12:00-20:00
20:00-04:00

DAY12H6 1 day 6am – 6pm
6pm - 6am

2 MQG_COLLATE_DAY12H6 Day
Night

HOUR30M 1 hour 30 minutes 2 MQG_COLLATE_HOUR30M 00m, 30m

HOUR15M 1 hour 15 minutes 4 MQG_COLLATE_HOUR15M 00m, 15m, 30m, 45m

HOUR10M 1 hour 10 minutes 6 MQG_COLLATE_HOUR10M 00m, 10m, 20m, etc.

HOUR5M 1 hour 5 minutes 12 MQG_COLLATE_HOUR5M 00m, 05m, 10m, etc.

HOUR1M 1 hour 1 minute 60 MQG_COLLATE_HOUR1M 00m, 01m, 02m, etc.

MONTH 1 year 1 month 12 MQG_COLLATE_MONTH March, April, etc.

MONTHDAY 1 month 1 day 31 MQG_COLLATE_MONTH_DAY 1st, 2nd, 3rd, etc.

MONTHWEEK 1 month 1 week 5 MQG_COLLATE_MONTH_WEEK 1st, 2nd, 3rd, etc.

MONTHWDAY 1 month 1 day 35 MQG_COLLATE_MONTH_WEEKDAY 1st Mon, 3rd Wed

WORKDAY 1 day 9am-5pm
5pm-9am

2 MQG_COLLATE_WORKDAY 09:00 – 17:00
17:00 – 09:00

WORKWEEK 1 week Mon-Fri
Sat-Sun

2 MQG_COLLATE_WORKWEEK Mon-Fri
Sat-Sun

YEARWEEK 1 year 1 week 53 MQG_COLLATE_YEAR_WEEK 1st, 2nd, 3rd, etc.

Page 46

MQEV User Guide – Version 9.4.1

Of course there are many ways that the data could be collated and we have tried to cover many of them. However,
this may well be a changing list depending on customer requirements. If you find that we have not covered a
collation that you might be interested in then let us know. As you can see from collations such as WORKDAY and
WORKWEEK the collation doesn't even have to be symmetrical.

7.3 Use examples
So why is Collation useful. What type of questions does it help to answer?

• What is the least busy period of the week?
We want to install some maintenance in IBM MQ and want the least disruption possible. We know the
installation will take around two hours so we are looking for a two hour window that is low on usage.

We would use something like WEEK2H or DAY2H

• What is the most busy time for messaging ?
We want to run some performance analysis on our production system. We want to ensure that our network
and disk usage is up to the task. So, we want to monitor what is happening during our traditional most busy
time. It might be just the busiest time of the week will suffice but perhaps we also want to know our busiest
month.

We would use WEEK1H or DAY1H and possibly MONTH

• We want to verify that we are getting an even spread of messaging
We strongly suspect that we have some timed jobs (CRON jobs) that are kicking off at 8pm or 10pm etc
and we want to investigate whether that is skewing our queue usage.

We would use DAY5M or possibly even DAY1M.

Note that to use this resolution of data you either need to be collecting the data at fairly high resolutions or
have short-lived applications.

• We are curious about how much messaging is being done outside of core hours
Does the quantity of messaging justify putting on extra support staff.

We would use WORKDAY

• We are curious about how much messaging is being done at the weekend
Does the quantity of messaging justify putting on extra support staff.

We would use WORKWEEK

• We want to know what effect running the payroll system on the 3rd Thursday of the month has
Here we would want to split the data down to which week in the month messages were flowing.

We would use MONTHWEEK

• We are curious about the messaging profile to/from other Queue Managers
This can be particularly interesting if your operation spans multiple time-zones. However, even on a single
time-zone it can be informative to know when the peaks and troughs of network traffic are in your system.
You can use STATCHL and look at the message profile of the remote Queue Manager.

We would use something like WEEK1H

Page 47

MQEV User Guide – Version 9.4.1

8 Emitters
As we know by now MQEV will collect your IBM MQ event, accounting and statistics messages and store them
for later retrieval, filtering and display. However, there are a number of reasons why you might want MQEV to
immediately output data to a file or queue.

• Downstream processing
We have already mentioned that for every event queue that MQEV is configured to read you defined a
forwarding queue which can contain a copy of the messages. This allows you to easily daisy-chain
downstream programs. However, suppose the downstream program is not well suited to receiving IBM
MQ event messages. After all PCF messages are not overly intuitive or easy to process. One might easily
prefer JSON format for example. This is what Emitters bring to the table. You can configure an Emitter
which will output any received event messages in JSON format which might be suitable for a downstream
service such as Elastic or Splunk.

• Archiving and Logging
Some people like to have a record of all that has happened in a simple, easy to read, file. Emitters can be
configured to write to a file in CSV, MQSC, JSON or NDJSON format.

• Debugging
When you are initially configuring the system it can be very handy to get a file created in a directory to
confirm that an IBM MQ message has been caught by MQEV and to show you the content.

8.1 Stream configuration
Streams are the MQEV construct for grouping together event data that should be treated in a similar way, for
example, that have the same retention requirements. Streams are also where you configure MQEV to emit the
event data on that stream in a particular format. You do this by first describing the way your want the data to be
emitted in an EVEMIT object, and then reference that new object on one or more streams.

Here is an example:-

DEFINE EVEMIT(TO.ELASTIC) QUEUE(ELASTIC.JSONQ) FORMAT(JSON) +
 DESCR('Write JSON format messages out for sending to Elastic') +
 PUT(IMMEDIATE)

ALTER EVSTREAM($EVENTS) EVEMIT(TO.ELASTIC)

In this example, MQEV has been configured to create JSON format versions of all the events on the default event
stream, $EVENTS, and to write them to a queue called ELASTIC.JSONQ. Now an application can read the messages
from that queue and post them to an Elastic HTTP listener. The supplied GetPost Application (described on page
51) can be used for this purpose. Of course Elastic is just one example, one could easily write a different
application to import the data into any other environment. The use of an MQ queue removes the need for MQEV
itself to be aware of all of these different environments and therefore adding downstream applications is straight-
forward. Secondly the queue adds a useful buffering mechanism. If, for some reason, the downstream process is not
available or slow, the queue will be used to buffer the data until the service is available again this allows MQEV to
continue processing the other events in the system and responding to commands.

8.2 Emitter Code page
By default MQEV will output the data in the Queue Manager's code page. However, if you are outputting the data
to a file then you can override this value by setting environment variable MQEV_EMIT_CCSID to the integer
code page. For example, MQEV_EMIT_CCSID=1047. Note that the code page should be an SBCS value and the
Queue Manager must know how to convert from the Queue Manager code page to this code page. For information
about installing conversion tables in IBM MQ please refer to the IBM MQ documentation.

Page 48

MQEV User Guide – Version 9.4.1

8.3 Emitter Formats

8.3.1 CSV
A common interchange file format where fields are comma separated. This format is particularly useful for loading
into programs such as a spreadsheet. Once loaded into a spreadsheet then clearly the data can be manipulated or
graphed with ease.

8.3.2 JSON
One of the formats you can emit your data in is JSON. This might be useful for uploading into systems such as
Elastic or Splunk. If you emit your JSON data to a queue, you might find the supplied GetPost Application
(see page 51) application useful.

8.3.3 NDJSON
This format, Newline Delimited JSON, is a slight variation of standard JSON. Rather than emitted objects being
contained in a JSON array the objects are merely separated by a newline character. This means that it is easier to
have a downstream program reading the emitted content at the same time as MQEV is writing the data since it
need not worry about array opening or closing brackets.

8.3.3.1 Unique ID
When MQEV emits data in JSON format, it contains a unique id, mqevUniqueId. This field is designed to ensure
that if you run your MQEV emitters in a mode that could cause duplicate data, i.e. using the EVEMIT parameter
PUT(IMMEDIATE), then your JSON data receiver, e.g. Elastic or Splunk, can be configured to discard any
duplicates by using this field.

Possible formats of this field are:

"mqevUniqueId": "414D51204E5450474331202020202020FFCD8D61028D1040-1"

or

"mqevUniqueId": "414D51204E5450474331202020202020FFCD8D61028D1040"

8.3.4 MQSC
Those familiar with RUNMQSC may prefer the data to be output in a 'MQSC-like' format. Clearly the files will not
themselves be true MQSC since the data is not an actual object. However, the easily recognisable format can be
useful for archiving the data. An example would be:

ACCTQ('MQGEM.MQEV.COMMAND.QUEUE') EVQMGR('NTPGC1') INTVLSTA('2021-11-15 08:59:49
(UTC)')INTVLEND('2021-11-15 09:13:57 (UTC)') CMDLEVEL(923) APPLNAME('MQGem Software
MQEV')CONNID(414D51434E5450474331202020202020FFCD8D61009A1040) USERID('Paul') PID(13192)
TID(1) QTYPE(QLOCAL) DEFTYPE(PREDEFINED) OPENCNT(4) OPENTI('2021-11-15 08:59:49 (UTC)')
CLOSECNT(4) CLOSETI('2021-11-15 09:13:57 (UTC)') ALLPUT(1) PUT(1) PUTNP(1) GET(7) GETNP(7)
GETFAIL(6) GETBYTE(520) GETBYTENP(520) GETMAXBYTE(96) GETMAXBYTENP(96) ONQMINNPTI(19)
ONQMAXNPTI(20977161) ONQAVGNPTI(3160297)

Page 49

MQEV User Guide – Version 9.4.1

8.4 Emitter File Name
You can configure an emitter to output the data either to a queue or a file. If you choose a queue then each set of
emitted data will become a message on the queue. However, if the output is a file then you have some additional
flexibility. It is unlikely that you just want MQEV to write more and more data to a file with no limit. This would
cause a number of problems not least of which that MQEV would continually keep the file open which would
prevent you from using the file downstream. Instead what you probably want is that MQEV will write to the
directory in a set of files. Exactly what that file distribution would be would probably depend on the usage of the
data. If, for example, you were just keeping an archive of the processed data then it is likely you would want to put
some time limit on each file. For example, you could request that each file contains and hours worth of data. The
way to achieve this is to simply put the time (with a resolution of an hour) in the file name.

Such as this:

FILE(c:\emit\statq_%c_%H.mqx)

One could just as easily make the file have a resolution of a day or a minute. The full range of name inserts are
given below. Here we have essentially used a file name with a resolution of an hour. This means that as MQEV
comes to write each piece of data it will calculate that a different file is required each hour.

Of course we might not be archiving the data but passing it to a downstream program. One could argue that in this
case it would make more sense to use a queue but suppose our downstream program reads only files. How do we
get each set of data to use a different file ? Well all we need to do is add either a %i insert or %u insert.

FILE(c:\emit\statq_%c_%H_%i.mqx)

or perhaps just even

FILE(c:\emit\statq_%i.mqx)

8.4.1 Emitter Filename Inserts

Sequence Effect

%% %

%i A monotonically increasing number with each set of data written.
MQEV will start the sequence at the first file which does not already exists in the directory

%I As %i but the index number is padded to five digits.

%p am or pm depending on time of day

%P AM or PM depending on time of day

%h Two digit hour (12 hour clock)

%hh Hour (12 hour clock)

%H Two digit hour (24 hour clock)

%HH Hour (24 hour clock)

%M Two digit minutes

%S Two digit seconds

%d Two digit day of month

%dd Day of month including suffix eg.1st, 2nd, 3rd …

%j Zero based Julian date

%J One based Julian date

%m Three character month name eg.Jan,Feb,Mar….

Page 50

MQEV User Guide – Version 9.4.1

%mm Two digit month

%mmm Full month name eg. January, February,March…

%u Add a unique file index. Starting at 1 and incremented until the filename is unique.

%U As %u above but always a 5 digit number.

%y Four digit year

%yy Two digit year

%t Simple time format HHMMSS eg. 181403

%c Current date in YYMMDD format

%C Current date in YYYYMMDD format

8.5 GetPost Application
We supply a sample Python application, the getpost application, to read from an emitter queue and post the
contents of the message to a supplied URL. This can useful to interface with environments such as Elastic and
Splunk, or any other HTTP listening process that accepts JSON format data. The program reads from a queue,
checks that the message content is valid JSON, and then posts the message data to the supplied URL. We supply
the source of this application so if you need to use it for other similar environments, you can adjust as necessary.
On Windows we also supply an executable version of the program for those of you that cannot, or do not want to,
run a Python interpreter.

If you do make changes to the program and you feel that the changes would be useful to other members of the MQ
community then please do feel free to send us a copy of your changes and we will possibly incorporate them into
the product.

The supplied getpost application can either be run from the command line or be started using IBM MQ
Triggering.

8.5.1 Parameters
The command line parameters for the getpost application are shown in the table below.

Parameter Meaning

-l <filename> File to write logging information to.
The program will always write to stdout, but in some environments, there will be no
stdout to view, so information can also be written to a file.

-m <Queue Manager> Queue Manager name (not needed when triggered)

-q <Queue Name> Input Queue Name (not needed when triggered)

-u <URL> URL of HTTP(S) Listener

-b Use the Elastic Bulk format.
This will convert any JSON array objects into nd-json (newline delimited JSON) and
use the Elastic bulk format URL to upload multiple objects with a single POST. Use of
this format will also use the mqevUniqueId as the _id in the Elastic index. It is
recommended to use this flag when POSTing to Elastic, but only essential for
uploading ACCTQ, STATQ and STATCHL types of data as those contain a JSON array of
objects.

-U <userid> Userid for connect to queue manager

-P <password> Password for connect to queue manager
If not supplied the password will be prompted for if -U is used

Page 51

MQEV User Guide – Version 9.4.1

-v Verbose output. When switched on the program will output more about what it is
doing to stdout and the log file (if used).

-p Output the message content to stdout and log file (if used)

-w <Wait Interval> Wait interval to wait for more messages (seconds).
The default is 300 seconds (5 minutes).

-c <Num Msgs> Commit after this many messages
Default of 50 messages if neither -c or -C are specified

-C <Num Bytes> Commit after this many bytes
Default of 1,000,000 bytes if neither -c or -C are specified

8.5.2 Error processing
The getpost application will use the backout requeue queue, if one is defined on the input queue. Any messages
found with an MQMD.BackoutCount greater than the threshold defined on the input queue, will be treated as a
poison message and immediately put to the backout requeue queue.

Any messages which are discovered not to be valid JSON will also be put to this queue so that the application can
continue to process other messages on the input queue.

8.5.3 Transactions
The getpost application will get messages from the input queue inside a transaction. The transaction will be
committed once the specified number of messages, or number of bytes of data, have been read, whichever is
reached first. Since an HTTP POST is not transactional, if a number a messages are read with MQGET and then
POSTed to the URL and then there is a failure and the transaction of gets is rolled back, the HTTP POSTs will be
repeated. Each MQEV JSON message has a unique ID in the data that can be used to detect duplicate POSTs to the
HTTP URL by the listening service. How this is done will depend on the service in use. See the -b flag if the
service you are using is Elastic. You can reduce the risk of repeated messages by reducing the transaction size to 1
using the -c flag.

8.5.4 Using Triggering
Here are some example commands to show how to set up the getpost application to be triggered to run when
messages are put by MQEV on the emitter queues.

Define an initiation queue:

DEFINE QLOCAL(PYTHON.INITQ) DESCR('Initiation Queue for Python App')

Define a single process object to describe the getpost application. This definition can contain parameters to the
getpost application that are the same for each emitter queue.

DEFINE PROCESS(PYTHON.PROC) DESCR('Triggered Python App') +
 APPLICID('C:\MQGem\getpost.py') +
 USERDATA('-c 25 -w 120')

Define each emitter queue to be triggered. This definition can contain parameters to the getpost application that
differ depending on the queue being triggered, for example the target URL.

Page 52

MQEV User Guide – Version 9.4.1

DEFINE QLOCAL(ELASTIC.JSON.EVENTS) +
 DESCR('Emitter Q for JSON Events to Elastic') +
 INITQ(PYTHON.INITQ) PROCESS(PYTHON.PROC) +
 TRIGGER TRIGTYPE(FIRST) +
 TRIGDATA('-u https://mqgem.es.io/mqev-events/doc -b')

DEFINE QLOCAL(ELASTIC.JSON.STATQ) +
 DESCR('Emitter Q for JSON StatQ to Elastic') +
 INITQ(PYTHON.INITQ) PROCESS(PYTHON.PROC) +
 TRIGGER TRIGTYPE(FIRST) +
 TRIGDATA('-u https://mqgem.es.io/mqev-statq/doc -b')

Page 53

MQEV User Guide – Version 9.4.1

9 Logging
MQEV will write out status messages to a log file. The location of these log files is in one of the following places,
listed in precedence order.

• The program parameter -L

• A DD card named MQEVLOG, which can reference a PDS or a UNIX file system directory. This only applies
on the z/OS platform. This DD name must not supply a member name.

• An environment variable MQEV_LOG_PATH

• The same location as where the program resides, except on AIX and z/OS UNIX, where the location of the
program cannot be determined, so the current directory is used instead.

If you have more than one queue manager on the same machine, and therefore more than one instance of MQEV
running, ensure that the log path used by each instance is distinct, for example by including the queue manager
name in the log path.

The log files themselves will be called MQEVLog_<Date><Time>.txt, unless written to a Partitioned Data Set
(PDSE), in which case the log files will have a member name generated as LYJJJxxx where

• L – just the letter L

• Y is a 1-digit year

• JJJ is the 3-digit, 1-based, Julian date

• xxx is an incrementing number if more than one log file is written in any one day. This number uses digits
from 000-999.

On z/OS, if you choose to write log files to a Partitioned Data Set, you are advised to use the DD card method, so
that you can set DISP=SHR. Otherwise you will not be able to view old log files in the Partitioned Data Set while
MQEV is running.

As MQEV runs it will always have one log file open. You can control the maximum size and age a log file can get
before the file is closed and a new log file is opened. If MQEV runs for a long time you can also tell it to delete log
files once they reach a certain age.

By default MQEV must write at least something to the log file every 'Log Heartbeat' seconds. If no log record has
been written in this time then MQEV will just write a simple 'Heartbeat record'. By default the Heartbeat frequency
is 86400 seconds (or 1 day). This can be changed by setting an environment variable. For example:

export MQEV_LOG_HB=3600

will set the frequency to hourly. Setting to a value of zero will switch this feature off.

Note that MQEV will not delete any log files generated in a previous instance of MQEV. If you want that to
happen then we suggest you run MQEV in a simple script which erases all MQEVLog* files before invoking
MQEV.

Page 54

MQEV User Guide – Version 9.4.1

10 Where Clause()
The standard IBM MQ WHERE() clause is rather restrictive. It is also complicated and has a difficult to follow
syntax. However the ability to specify additional search criteria is very useful so we need something along these
lines. So, for the MQEV commands we have implemented our own flavour of a WHERE() clause which is similar
in many ways to the IBM MQ WHERE() clause but extensively enhanced.

MQEV uses the same WHERE() clause engine which is used in MQSCX. This removes many of the restrictions
found in the IBM MQ WHERE() clause and enhances it so that one can now issue much more powerful queries.

So, perhaps listing the standard restrictions might be a good place to start. If you are new to the WHERE() clause it
might be worth revisiting the IBM MQ manuals to read a description of the syntax and come back when you have
the basics. You will have seen that you can do lots of good stuff in a WHERE() clause but what might not be so
obvious is what you can’t do……which is:

 You can’t use the primary object name in a WHERE() clause
 You can’t use any of the sub-filter attributes in a WHERE() clause
 A WHERE() clause may only contain one operation – you can’t link them together with AND and OR
 You can only have a single attribute in a WHERE() clause. For example, you can’t compare one attribute with

another.
 Although it supports wildcard comparisons the wildcards may only be at the end of strings.
 You can’t use indicators12 in a WHERE() clause.

Phew! Quite a list of restrictions and unfortunately most of these would be very nice to have.

But, as you may suspect, with MQEV none of these restrictions apply.

Let’s try some real world examples. Provided you know the WHERE() syntax you should have no trouble working
out what the command is doing. Just to keep it interesting we’ll stick to commands which would have been illegal
to issue using the IBM MQ WHERE() clause rules, see if you can spot why the command would have been illegal.

DISPLAY EVENTS(*) WHERE(EVOBJNAME LK '*ABC*')

So, this command will show you all the events which were generated that contain the text 'ABC' somewhere in the
name of the object that the event is about. Note that we can use multiple wildcards in the operand.

DISPLAY EVENTS(*) WHERE(EVUSERID = 'mqgemusr' AND EVOBJNAME LK '*ABC*')

This command will show you all the events where the user id 'mqgemusr' did something to objects that have 'ABC'
somewhere in their name. This shows that you can link multiple expressions using AND and OR operators. If you
prefer you can use the operators '&' and '|' to represent the 'and' and 'or' operators. Using '&' and '|' can make the
expression easier to read and clearly involve less typing, partly because they are shorter but also because they don't
require a space character to separate them from the attribute.

Ok, so, what other flavours of WHERE expressions are supported. Consider the following:

DISPLAY EVENTS(*) WHERE(MSGSIN >= 2*MSGSOUT)

This command compares two attributes within the same event, in this case a performance event.

It is requesting to see all the events where the number of messages enqueued is two or more times greater than the
number of messages dequeued in the same period.

This command demonstrates a couple of points worth mentioning

12 An indicator is an attribute, usually returned on a status display, which contains two values in list format. Usually a short
term and a long term average. Examples include NETTIME on channel status or QTIME on a queue status response.

Page 55

MQEV User Guide – Version 9.4.1

 Mathematical expressions
The WHERE() clause is essentially one big Boolean expression. If the expression evaluates to TRUE (non-
zero) for any object then it is displayed. If it evaluates to FALSE (zero) then it is not displayed.

Within that remit you are free to enter virtually any mathematical expression you like, subject to the supported
operators. If the expression evaluates to a non-zero value then the object is displayed. So, for example a filter
of WHERE(1) is perfectly valid although somewhat superfluous.

For a complete list of the WHERE operators please see Appendix A. Expression Operators on page 229.

 Operator synonyms
A number of operators have synonyms. In this case the operator GE could equally have been used. It is purely a
matter of taste whether you have more of an SQL versus a mathematical background.

So, staying on a mathematical theme can we guess what this might do?

DISPLAY EVENTS(*) WHERE(EVOBJNAME < 10)

To understand this filter we really just need to know how MQEV handles an expression containing both strings and
numbers. The answer is coercion13. MQEV will automatically convert any string value to a numerical equivalent if
it has an operation concerning both a string and number. The number it converts it to is its length. So, this
command is saying, display any events which have an object name of less than 10 characters.

Another example:

DISPLAY EVENTS(*) WHERE(EVOBJNAME != upper(EVOBJNAME))

It should be fairly clear what this is doing. We are asking to see any events where the object name is not upper case
i.e. The object name is not the same value when upper cased. Of course depending on your system configuration
you may or may not see results. Commands like these can be useful to ensure compliance with installation
standards.

One of the most notable things about this command is the use of a function in the WHERE() clause. For a list of
available functions please see Appendix B. Expression Functions on 230.

The next expression format we want to discuss is enumerated types. These are many event attributes which have a
fixed set of values, for example, suppose we wish to see the events which were caused by applications running on
Unix. We would enter the command:

DISPLAY EVENTS(*) WHERE(APPLTYPE = UNIX)

Note that you must enter the fields this way round. It would be invalid to enter the command:

DISPLAY EVENTS(*) WHERE(UNIX = APPLTYPE)

This would generate a variable error since the program would look for a variable called 'unix'.

Variables can also have modifiers, either prefixes or suffixes, which allow you to identify a particular instance of
the variable. For example some variables are what is known as 'indicators'. These contain both a long term and
short term average value. You can access these by using the .LONG and .SHORT suffixed. For example
QTIME.SHORT.

Another case where a modifier is useful is the change object event. When an object is changed IBM MQ will send
two event messages, a before event and an after event. These are awkward to deal with so MQEV will combine the
two into a single change object event message where the before and after fields are stored in before and after
groups. It follows therefore that in the same event message there could be two fields of the same name.

13 Coercion, in the computing sense, is merely the process of making one data type compatible with another data type.

Page 56

MQEV User Guide – Version 9.4.1

This allows us to issue a command such as the following:

DISPLAY EVENTS(*) WHERE(BEFORE.INITQ != AFTER.INITQ)

This says “show any event which changed the value of an initiation queue”. This can be very useful for tracking
down when something changed and who did it.

10.1.1 Attribute presence
Of course it is possible to use an attribute in an expression which doesn't get returned in each event. Consider the
expression:

DISPLAY EVENTS(*) WHERE(INITQ NE 'xxxxxxxx')

One might expect that this expression would show all events relating to queues since it is unlikely that you have
any queues defined with an INITQ value of 'xxxxxxxx'. However, the semantics of the WHERE clause is such that
the expression always evaluates to FALSE if a variable is not present. So, only events messages which actually
contain the INITQ field will be returned.

This mechanism is quite useful since, given the WHERE expression, it is likely that the user is only interested certain
types of objects.

However, as we have heard in the sections above, the WHERE clause has been extended to include logical OR
expressions so in this case this rule has been this relaxed.

Consider the expression:

DISPLAY EVENTS(*) WHERE(RNAME | TARGET)

If the WHERE() clause stuck to the original rule then this expression would never return any objects since 'rname' is
an attribute of a remote queue and 'target' is an attribute of an alias queue. The two attributes are mutually exclusive
since they belong to different object types. However, the rule above has been relaxed and this expression will return
a list containing all remote queues which have a value for 'rname' and all alias queues with a value for 'target'.

Page 57

MQEV User Guide – Version 9.4.1

11 Running MQEV with your Queue Manager
Generally speaking you would want MQEV to be running whenever your Queue Manager is running. This means
that MQEV will be ready, willing and able to process events as and when they arrive.

There are slightly different facilities available on distributed and z/OS platforms to achieve this. This chapter
describes those facilities.

11.1 Running MQEV as an IBM MQ Service (Distributed platforms)
Handily, IBM MQ has a mechanism for programs to use, if they wish to start and end alongside the Queue Manger,
known as Service objects. The idea is that you define a service object which describes the program you wish to
configure and the commands needed for both starting and stopping it. You can then either issue commands START
and STOP SERVICE manually or have them automatically start and stop as the Queue Manager comes up and
down.

In the case of MQEV, the definition you would make would be along the following lines:

11.1.1 When running on the event Queue Manager
DEFINE SERVICE(MQGEM.MQEV) +
 DESCR('MQGem Software Event Monitor') +
 CONTROL(QMGR) SERVTYPE(SERVER) +
 STARTCMD('mqev') STARTARG('-m +QMNAME+ -k') +
 [STOPCMD('mqscx') STOPARG('-m +QMNAME+ -f -C "=mqev;STOP EV"')]*

You can see that starting the program is a simple case of running the MQEV program. If the program is not in your
path then you may need to provide the fully qualified location.

* As far as stopping MQEV is concerned there are two modes.

1. It is actually recommended that you leave the STOPCMD and STOPARG blank since MQEV will end anyway
when the Queue Manager comes down. The only benefit of STOPCMD and STOPARG is that they allow you
to end MQEV using the STOP SERVICE command. However, the advantage of this is outweighed by the
disadvantage of a less efficient command sequence when the Queue Manager ends since the STOP
SERVICE command will instantiate a new MQSCX instance.

2. If you do set the value of STOPCMD and STOPARG as above then STOP SERVICE will work. However, note
that making a new connection when the Queue Manager comes down is slightly less efficient.

11.1.2 When running using a State Queue Manager
When you are using a state Queue Manager the definition is slightly different. For one thing the service object is
defined as a service on the state Queue Manager rather than the event Queue Manager. You would define a service
object for each remote Queue Manager you wished to monitor. The definition would look something like the
following:

Page 58

MQEV User Guide – Version 9.4.1

DEFINE SERVICE(MQG1) +
 DESCR('MQGem Software Event Monitor') +
 CONTROL(QMGR) SERVTYPE(SERVER) +
 STARTCMD('mqev') +
 STARTARG('-m +MQ_SERVICE_NAME+ -l -s +QMNAME+ -k') +
 STOPCMD('mqscx') +
 [STOPARG('-m +MQ_SERVICE_NAME+ -l -f -C "=mqev;STOP EV"')] *

The inserts such as, +QMNAME+, can be entered exactly like this and IBM MQ will substitute the actual name of
the Queue Manager for you. This can be very useful since if you stick to the naming convention and exact format
above you can make additional definitions for additional Queue Mangers using the very simple command:

DEFINE SERVICE(MQG2) LIKE(MQG1)

11.2 Running MQEV in batch (z/OS only)
On z/OS, you are most likely to want to run the MQEV program in batch. What follows is an example piece of JCL
to allow you to do that and an explanation of the various DD names that MQEV will look for.

//MQEV EXEC PGM=MQEV,
// PARM=('-m MQG1')
//STEPLIB DD DSN=MQGEM.LOAD,DISP=SHR
// DD DSN=IBM.MQ.SCSQANLE,DISP=SHR
// DD DSN=IBM.MQ.SCSQAUTH,DISP=SHR
//MQGEML DD DSN=MQGEM.LICENCES,DISP=SHR
//MQEVMQX DD DSN=MQGEM.MQEV.SCRIPTS(MQEV),DISP=SHR
//MQEVLOG DD DSN=MQGEM.MQEV.LOGS.MQG1,DISP=SHR

There are three well defined DD names that the MQEV program will look for.

11.2.1 DD name MQGEML
The MQEV program must be able to find your MQGem Software licence file in order to be able to run. This is a
licence file specific for MQEV on z/OS. A distributed platform licence will not enable MQEV on z/OS to run.

See 2.1 Licence File Location on page 10 for more information about using the MQGEML DD name.

11.2.2 DD name MQEVMQX
The MQEV program must be able to find the MQEV script. This can be located using the -f program parameter
(see 3.3.2 Script functions on page 16), however in JCL it is neater, and keeps the PARM string shorter, by using this
DD name to locate it instead.

11.2.3 DD name MQEVLOG
The MQEV program needs to know where to write out its log files. This can be located using the -L program
parameter, however in JCL it is neater, and keeps the PARM string shorter, by using this DD name to locate the
library/directory instead. See 9 Logging on page 54 for more details about all the different ways to set your log
path.

Page 59

MQEV User Guide – Version 9.4.1

11.3 Running MQEV as a Started Task (z/OS only)
It may be appropriate in your z/OS environment to run the MQEV program as a started task.

A sample started task procedure is provided in the zip file, MQEVSTC.JCL. Copy this to your procedure library
and give it an appropriate name, for example xxxxMQEV (where xxxx is the name of your IBM MQ queue
manager). The IBM-supplied procedure library is called SYS1.PROCLIB, but your installation might use its own
naming convention.

You will of course need to edit it to match your installation naming conventions for datasets.

//**
//* Run MQEV program *
//**
// PROC QMGR=MQG1
//PROCSTEP EXEC PGM=MQEV,
// PARM=('-m &QMGR')
//*
//STEPLIB DD DSN=MQGEM.LOAD,DISP=SHR
// DD DSN=IBM.MQ.SCSQANLE,DISP=SHR
// DD DSN=IBM.MQ.SCSQAUTH,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//MQGEML DD DSN=MQGEM.LICENCES,DISP=SHR
//MQEVMQX DD DSN=MQGEM.MQEV.SCRIPTS(MQEV),DISP=SHR
//MQEVLOG DD DSN=MQGEM.MQEV.LOGS.&QMGR,DISP=SHR
//

Having done this set-up, the MQEV program can be started using the MVS start command. The following example
assumes the name of the member in your procedure library is MQG1MQEV.

/S MQG1MQEV

or

/START MQG1MQEV

11.4 Stopping MQEV using the MVS STOP command

MQEV on z/OS can be stopped either

• by using the STOP EV command, sent to the MQGEM.MQEV.COMMAND.QUEUE, by using MQSCX or
MO71 (see Chapter 13.33 STOP EV on page 171 for a description of this command)

• or by using the MVS stop command. For example:

/P MQG1MQEV

or

/STOP MQG1MQEV

Page 60

MQEV User Guide – Version 9.4.1

12 Returned Interval Times
When looking at accounting and statistics records using one of the following DISPLAY commands:-

• DISPLAY ACCTMQI
• DISPLAY ACCTQ
• DISPLAY STATCHL
• DISPLAY STATMQI
• DISPLAY STATQ

there are a number of different ways that the data can be totalled which will result in different times being returned
as the start and end of intervals.

12.1 SUM(NONE)
If you select SUM(NONE) as a parameter, then no totalling takes place and each record returned as output on the
DISPLAY command shows the start and end interval times as originally recorded by IBM MQ as it created the
accounting or statistics record.

12.2 SUM(something) with no INTVL
In this example you are requesting a single record for each unique 'key' you specify in the SUM field. So, for
example if you specify SUM(APPL,CHANNEL,CONNAME) then you are asking for one record to be returned for
each unique combination of the given fields. It might be useful to think of SUM(...) as 'sum by'. This concept can
be very useful to answer all sorts of questions. Consider the following options:

SUM() value Meaning

APPL Return a record for each Application
Useful if you want to know what's doing the most messaging etc

CHANNEL Return a unique record for each Channel
Useful for determining which channels are used the most and perhaps which are no-longer
used.

USERID Return a record for each unique Userid
Useful for seeing who is doing what to your Queue Manager

RPRODUCT Sum by remote product identifier
Useful to know what remote clients are connected to your Queue Manager.
Are people using JMS, C, .Net Java etc

APPL,RPRODUCT Similar to the one above but now you get a record for each Application/Product combination.
This is useful for seeing which applications are using which clients.

RVERSION Sum by remote version number
Useful to know what version of MQ Client people are using. For example, are people still
using an old out of date product

APPL,RPRODUCT,
RVERSION

Similar to the one above but now you get a record for each Application/Product Version
combination. This is useful for seeing which applications are which version of client.

CONNAME Sum by remote IP address
Useful to know how many machine are connecting to you and where from.

Of course there are many more combinations and each combination has the potential to show you something
interesting.

Page 61

MQEV User Guide – Version 9.4.1

The start and end interval times of each record returned will be dependent on the minimum and maximum times of
the records within each record. This can be useful to get an indication of when something is happening, either a
particular time of day or a range of times.

12.3 SUM(something) and INTVL(something)
This is very like the case above however you will get a record for each SUM combination and interval. So, for
example, if you requested to get a days worth of data (using the FROM and TO parameters on the DISPLAY
command) but specified an interval of 4 hours then you might receive up to 6 records for that 24 hour period,
depending on the activity of that SUM combination.

Reducing the interval value increases the amount of results you receive but increases the resolution of the time
when the activity happened. Needless to say you cannot increase the resolution beyond that which IBM MQ sent
the messages of course. In other words, if MQ is issuing a statistics every 30 minutes then there is little point in
requesting statistics with an interval lower than that. Accounting data is slightly different. If you have applications
which are continually connecting and disconnecting then MQ will send records faster that the configured interval
speed so having a low interval may well give you more frequent records than the configured accounting interval..

Using an interval has two main advantages:

1. You get a greater resolution of when something happened

2. You get a list of values which are graph-able

Consider the case where we have requested to see puts and gets for the last 24 hours with a 1 hour interval. MQEV
will return us up to 24 records. Of course rather than displaying your data in a list you may wish to see the data in a
graph. This can be very useful for seeing trends. There are two ways of doing this:

1. You can bring up the MO71 graph and add the MQEV fields directly.
Please see the chapter on 'Graphing' in the MO71 manual to see how this is done.

2. Export your collected list as a CSV file
It is relatively straightforward in either MQSCX or in MO71 to turn that set of data into a comma
separated (CSV) file on disk. This CSV file can then be fed into a host of applications such as Excel which
will display the data as a graph.

12.3.1 Graphing
If you have interest in graphing then there are two other options on the command which are useful.

12.3.1.1 GAPFILL
The INTVL parameters allows you to get a record for each interval over the range of dates you specify. However,
by default if there is no activity during a particular interval then you will not get a record. As an example, suppose
you issue a display for activity over the last week and ask for an interval of every 4 hours. Now suppose a
particular queue was only used on Monday. You will not receive any records for Tuesday, Wednesday, Thursday
etc. You only receive records in which there was at least some activity. This is great if the command is being issued
to determine when the queue was being used. However, if you want to graph activity then you really want MQEV
to give you records containing the '0' value so that it becomes a point on the graph. You can ask for this to happen
by specifying something like GAPFILL(ACTIVITY). GAPFILL has a number of options so use the one you need in
order to get the effect you are after.

12.3.1.2 ZEROVALS
For efficiency MQEV will normally not send responses for counts that contain a zero value. For example, suppose
you issue a command to determine what MQI calls have been issued. There seems little point in sending a response
saying 'Number of Browses zero, Number of MQCB zero, Number of MQCMIT zero etc'. What the user generally
wants to know are the non-zero values. I,e. What DID happen, not what DIDN'T happen. However, that is not so
true if the results are being graphed. In those cases you probably do want an actual zero value sent to you. You can
do this by adding ZEROVALS(SHOW) to your command.

Page 62

MQEV User Guide – Version 9.4.1

13 Command Reference
This chapter describes, in alphabetic order, all the MQSC commands that can be issued to MQEV. In addition, each
MQSC command description contains the details for using the same command via the PCF interface.

The MQEV event processor has the following sets of commands:

• EV Commands

◦ ALTER EV, see page 71

◦ DISPLAY EV, see page 115

◦ RESET EV, see page 170

◦ STOP EV, see page 171

• EVQMGR Commands

◦ DISPLAY EVQMGR, see page 131

◦ REMOVE EVQMGR, see page 167

• EVQ Commands

◦ ADD EVQ, see page 69

◦ ALTER EVQ, see page 79

◦ REMOVE EVQ, see page 166

◦ SUSPEND EVQ, see page 171

◦ RESUME EVQ, see page 170

◦ DISPLAY EVQ, see page 154

• EVALERT Commands

◦ ADD EVALERT, see page 65

◦ REMOVE EVALERT, see page 164

◦ DISPLAY EVALERT, see page 118

• EVEMIT Commands

◦ ALTER EVEMIT, see page 75

◦ DEFINE EVEMIT, see page 86

◦ DELETE EVEMIT, see page 93

◦ DISPLAY EVEMIT, see page 121

• EVSTREAM Commands

◦ DEFINE EVSTREAM, see page 90

◦ ALTER EVSTREAM, see page 81

◦ DELETE EVSTREAM, see page 94

◦ DISPLAY EVSTREAM, see page 133

◦ RENAME EVSTREAM, see page 168

• EVSTRMST Commands

◦ COPY EVSTRMST, see page 84

◦ DISPLAY EVSTRMST, see page 135

◦ PURGE EVSTRMST, see page 162

• Events Commands

◦ DISPLAY EVENTS, see page 123

• Accounting and Statistics Commands

◦ DISPLAY ACCTMQI, see page 95

◦ DISPLAY ACCTQ, see page 105

◦ DISPLAY STATCHL, see page 137

◦ DISPLAY STATMQI, see page 144

◦ DISPLAY STATQ, see page 154

Page 63

MQEV User Guide – Version 9.4.1

13.1 Programmable command format commands and responses
You can use MQSCX or MO71 to administer MQEV. Alternatively, you can write your own application to send
PCF format commands to the MQEV command server.

PCF commands and responses have a consistent structure including a PCF header (MQCFH) structure and any
number of parameter structures of defined types, just in the same way as the IBM MQ command server. To learn
more about the general structure and usage of the PCF format, please read Knowledge Center, starting at
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.ref.adm.doc/q088570_.htm

When sending PCF format messages to the MQEV command server, the following points should be noted in
addition to that described in IBM Knowledge Center.

• The MQCFH Type field must contain the value MQCFT_COMMAND.

• The MQCFH Version field must be MQCFH_VERSION_1

• The constants described in this chapter to be used in PCF format messages sent to the MQEV command
server that begin MQG_ are defined in mqev.h which can be found in your zip/tar file.

• Unlike the IBM MQ command server, responses are not sent as individual messages, but instead are
gathered together with many responses to the command in a single reply message. This is a more efficient
way to use MQ, but is different from the way you may have processed PCF response messages in other
applications. In order to determine where the end of one response ends and another response begins, look
for an MQCFIN parameter as described below.

• The WHERE (identifier: MQG_ATTR_WHERE) and PREWHERE (identifier: MQG_ATTR_PREWHERE) parameters
are very different to the IBM MQ command server's use of WHERE. These are simple string parameters
which contain the MQSC style WHERE value. MQEV does not make use of the PCF filter types, MQCFIF,
MQCFBF or MQCFSF.

• 64-bit integer values (MQCFIN64) may be provided as 32-bit integers (MQCFIN) if the value to be conveyed
to the command server is small enough to fit in a 32-bit integer field.

• The REPLACE (identifier MQIACF_REPLACE) parameter does not have a negative equivalent attribute
NOREPLACE in MQEV. If the REPLACE parameter is omitted, NOREPLACE is assumed.

• Some parameters may be represented by an MQCFIN or an MQCFIL depending on whether one, or more
than one value needs to be conveyed to the command server. This is described fully on the parameters
where it is applicable.

ResponseSeparator (MQCFIN)
The response separator (parameter identifier: MQG_ATTR_RESPONSE_DELIMETER).

This parameter is the separator between responses in a reply message from the MQEV command server.

The value is always set to zero, and conveys no meaning.

In the pages that follow, the PCF constants needed for each command, and its responses are described alongside the
equivalent MQSC flavour of the command.

Page 64

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.ref.adm.doc/q088570_.htm

MQEV User Guide – Version 9.4.1

13.2 ADD EVALERT
Use the MQSC command ADD EVALERT (or it's equivalent PCF command MQG_CMD_ADD_EV_ALERT) to create
an alert. Alerts can be used as reminders or notifications. Learn more about alerts in Chapter 14 Alerts on page 172.

A log file entry will be written by this command showing the details of the alert that was added.

13.2.1 Syntax diagram for ADD EVALERT

 ┌─ CATEGORY(' ') ────┐
►►─ ADD EVALERT ── TEXT(string) ───┼──────────────────────┼──────────────────►
 └─ CATEGORY(string) ─┘

 ┌─ EVENTID(' ') ─────┐ ┌─ EVOBJNAME(' ') ────┐ ┌─ EVQMGR(' ') ────┐
►──┼──────────────────────┼──┼───────────────────────┼──┼────────────────────┼─►
 └─ EVENTID(integer) ─┘ └─ EVOBJNAME(string) ─┘ └─ EVQMGR(string) ─┘

 ┌─ EVOBJTYPE(NONE) ────────────┐ ┌─ SEVERITY(ERROR) ──────────┐
►──┼────────────────────────────────┼──┼──────────────────────────────┼────────►
 └─ EVOBJTYPE(─┬─ AUTHINFO ─┬─)─┘ └─ SEVERITY(─┬─ TERM────┬─) ─┘
 ├─ AUTHREC ──┤ ├─ SEVERE ─┤
 ├─ CFSTRUCT ─┤ ├─ WARN ───┤
 ├─ CHANNEL ──┤ └─ INFO ───┘
 ├─ CHLAUTH ──┤
 ├─ CLNTCONN ─┤
 ├─ COMMINFO ─┤
 ├─ LISTENER ─┤
 ├─ NAMELIST ─┤
 ├─ PROCESS ──┤
 ├─ QUEUE ────┤
 ├─ QMGR ─────┤
 ├─ RQMNAME ──┤
 ├─ SERVICE ──┤
 ├─ SUB ──────┤
 ├─ STGCLASS ─┤
 ├─ TOPIC ────┤
 └─ TOPICSTR ─┘

 ┌─ RETINTVL(ev-default) ──┐ ┌─ EVSTREAM(' ') ─────┐
►──┼───────────────────────────┼──┼───────────────────────┼───┬───────────┬──►◄
 └─ RETINTVL(integer) ─────┘ └─ EVSTREAM(string) ──┘ └─ REPLACE ─┘

13.2.2 Parameter descriptions for ADD EVALERT

CATEGORY
The category of the alert. A category can be any string which conveniently groups different alerts of the
same type. The maximum length of this string is MQG_ALERT_CATEGORY_LENGTH (10).The
default value is blank. Users should not use categories starting with a $ (dollar) sign. These are reserved
for system use.

Currently the following alert categories may be generated by MQEV.

Page 65

MQEV User Guide – Version 9.4.1

Category Meaning

$LICENCE Alerts to inform the user of impending licence expiry

$VERSION Alerts to inform the user that a new version of MQEV exists.

$STORM Alerts to inform the user that an event storm has been detected.

$EMIT Alerts the user that an emitter has either been suspended or bypassed.

$DATAQHI Alerts the user that the DATAQ is becoming 'full' which means that the queue has less
than 250 messages before max depth is reached.

$IMPLICIT Alerts the user that a script has put an Accounting and Statistics message to more than
one stream which is marked as DISPLAY implicit.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_ALERT_CATEGORY

EVENTID
The unique ID of the event this alert is about. The default value is blank.

If ADD EVALERT is called from inside the MQEVEvent function, and this is left blank, then this is
automatically filled-in with the EVENTID of the current event being processed (assuming the function
does not choose to discard the event). Learn more about event functions in Chapter 16 MQEV Scripting
on page 178.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_EVENT_ID.

EVOBJNAME
The object name that this alert refers to. The default value is blank.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_OBJECT.

EVOBJTYPE
The object type that this alert refers to. The default value is blank.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_OBJECT_TYPE.

Possible Values are:-

MQSC value Meaning PCF constant

AUTHINFO Authentication information object MQOT_AUTH_INFO

AUTHREC Authorization records MQOT_AUTH_REC

CFSTRUCT CF Structure MQOT_CF_STRUC

CHANNEL Channel MQOT_CHANNEL

CHLAUTH Channel Authentication records MQOT_CHLAUTH

CLNTCONN Client connection channel MQOT_CLNTCONN_CHANNEL

COMMINFO Communication information object MQOT_COMM_INFO

LISTENER Listener MQOT_LISTENER

NAMELIST Namelist MQOT_NAMELIST

NONE None. This is the default value. MQOT_NONE

PROCESS Process MQOT_PROCESS

QUEUE Queue MQOT_Q

Page 66

MQEV User Guide – Version 9.4.1

MQSC value Meaning PCF constant

QMGR Queue manager MQOT_Q_MGR

RQMNAME Remote queue manager MQOT_REMOTE_Q_MGR_NAME

SERVICE Service object MQOT_SERVICE

STGCLASS Storage Class MQOT_STORAGE_CLASS

SUB Subscription MQG_OT_SUB

TOPIC Topic MQOT_TOPIC

TOPICSTR Topic String MQG_OT_TOPICSTR

EVQMGR
The queue manager to which this alert is associated. The maximum length of this string is
MQ_Q_MGR_NAME_LENGTH (48). The default value is blank.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_ALERT_Q_MGR.

REPLACE
Whether an existing alert is to be replaced with this one. This is optional. The default is not to replace the
alert. When specified the alert replaces an existing one with the following matching attributes.

• TEXT

• CATEGORY

• EVQMGR

• EVOBJECT

• EVOBJTYPE

If a matching alert does not exist, one is created.

RETINTVL
The retention interval, in seconds, for this alert. The default value is the ALERTRET value on the EV
object converted into seconds.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_RETENTION_INTERVAL.

SEVERITY
The severity of the alert.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_ALERT_SEVERITY.

Possible values are:-

MQSC value Meaning PCF constant

TERM Termination MQG_SEVERITY_TERM

SEVERE Severe Error MQG_SEVERITY_SEVERE

ERROR Error. This is the default value MQG_SEVERITY_ERROR

WARN Warning MQG_SEVERITY_WARN

INFO Information MQG_SEVERITY_INFO

Page 67

MQEV User Guide – Version 9.4.1

EVSTREAM
The stream to which this alert is associated. The maximum length of this string is
MQG_STREAM_NAME_LENGTH (64). The default value is blank.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_STREAM_NAME.

TEXT
The text of the alert. The maximum length of this string is MQG_ALERT_TEXT_LENGTH (1024). This
attribute must be specified.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_ALERT_TEXT.

Page 68

MQEV User Guide – Version 9.4.1

13.3 ADD EVQ
Use the MQSC command ADD EVQ (or it's equivalent PCF command MQG_CMD_ADD_EV_Q) to add MQEV details
regarding a queue that is to be processed by the MQEV event processor.

A log file entry will be written by this command showing the queue name that was added.

N.B. If you attempt to ADD a queue that is already there (with the REPLACE keyword), it will succeed as if you had
done an ALTER.

13.3.1 Syntax diagram for ADD EVQ

 ┌─ DESCR(' ') ────┐ ┌─ FWDPSIST(ASMSG) ───────┐
►►─ ADD EVQ(queue-name) ─┼───────────────────┼─┼───────────────────────────┼──►
 └─ DESCR(string) ─┘ └─ FWDPSIST(─┬─ YES ─┬─) ─┘
 └─ NO ──┘
 ┌─ FWDQ(' ') ────┐ ┌─ TEMPQ(DISCARD) ─┐
►─┼──────────────────┼──┼────────────────────┼──┬───────────┬─────────────────►◄
 └─ FWDQ(string) ─┘ └─ TEMPQ(STORE) ───┘ └─ REPLACE ─┘

13.3.2 Parameter descriptions for ADD EVQ

(queue-name)
The name of the IBM MQ event queue being added to MQEV for processing. The maximum length of
this string is MQ_Q_NAME_LENGTH (48). If a FWDQ is specified, this queue will be opened using
MQOO_SAVE_ALL_CONTEXT.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EVENT_Q_NAME.

DESCR
A description of the event queue. The maximum length of this string is MQ_Q_DESC_LENGTH (64).

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EVENT_Q_DESC.

FWDQ
The queue name event messages should be forwarded to for daisy-chaining purposes. The maximum
length of this string is MQ_Q_NAME_LENGTH (48). If provided this queue will be opened with
MQOO_PASS_ALL_CONTEXT.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_FORWARD_Q_NAME.

Page 69

MQEV User Guide – Version 9.4.1

FWDPSIST
The persistence that should be used for event messages that are forwarded to the queue named in the
FWDQ attribute.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_FORWARD_PERSISTENCE.

Possible Values are:-

ASMSG
Forwarded messages have the same persistence as the original event message. This is the initial
value.
The PCF value for this is MQG_PERSISTENCE_AS_MESSAGE.

YES
Forwarded message are persistent.
The PCF value for this is MQG_PERSISTENCE_YES.

NO
Forwarded messages are non-persistent.
The PCF value for this is MQG_PERSISTENCE_NO.

TEMPQ
How statistics records about temporary queues are handled.

It is only currently possible to determine when a queue is temporary through the statistics records. For
accounting and events, it is not possible to tell and therefore this attribute will have no effect.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_TEMPQ_DISP.

Possible Values are:-

DISCARD
Records about temporary queues are discarded. This is the initial value.
The PCF value for this is MQG_TEMPQ_DISCARD.

STORE
Records about temporary queues are stored.
The PCF value for this is MQG_TEMPQ_STORE.

REPLACE
Whether the existing event queue configuration is to be replaced with this one. This is optional. The
default is not to replace the event queue configuration. When specified the event queue replaces the
existing one with the same name. If a matching event queue configuration does not exist, one is added.

When using the PCF interface, this is an MQCFIN parameter with identifier MQIACF_REPLACE.

Page 70

MQEV User Guide – Version 9.4.1

13.4 ALTER EV
Use the MQSC command ALTER EV (or it's equivalent PCF command MQG_CMD_ALTER_EV) to change the main
overall configuration of the MQEV event processor.

A log file entry will be written by this command showing the alteration that was made.

13.4.1 Syntax diagram for ALTER EV

►►─ ALTER EV───┬────────────────────────────┬────┬───────────────────────┬──────►
 └─ ACCTSELF(┬─ DISCARD ─┬) ┘ └─ ALERTRET(integer) ─┘
 └─ KEEP ────┘

►─┬─────────────────────┬────┬─────────────────┬──┬─────────────────────┬───────►
 └ AUTHDURN(integer) ┘ └ DEADQ(string) ┘ └ DEFBOTHR(integer) ┘

►─┬───────────────────────┬──┬─────────────────┬──┬───────────────────────────┬─►
 └ DEFMAXRECS(integer) ┘ └ DESCR(string) ┘ └─DISPCMDS(┬─ DISCARD ─┬) ┘
 ├─ HIDE ────┤
 └─ SHOW ────┘
►──┬─────────────────────────┬─────┬──────────────────────┬─────────────────────►
 └── LICREMIND(integer) ─┘ └── LOGRET(integer) ─┘

►──┬─────────────────────────┬─────┬────────────────────────┬───────────────────►
 └── MAXLOGAGE(integer) ─┘ └── MAXLOGSZ(integer) ─┘

►──┬──────────────────┬──┬───────────────────────┬──┬───────────────────────┬───►
 └─ NAME(string) ─┘ └─ STORMINT(integer) ─┘ └─ STORMTHR(integer) ─┘

►──┬─────────────────────────────┬───────────────────────────────────┬──────────►◄
 └─ USEDLQ(─┬─ YES ─────┬─) ─┘ └─ VERCHECK(─┬─ BUILD ───┬─) ─┘
 ├─ NO ──────┤ ├─ VERSION ─┤
 └─ IFAVAIL ─┘ └─ NO ──────┘

13.4.2 Parameter descriptions for ALTER EV

ACCTSELF
Whether MQEV should store any Accounting and Statistics data for it's own connections. By default
MQEV will switch off Accounting and Statistics tracking for it's own connections to reduce it's impact on
any MQ activity. However it could well be that installation policies preclude applications from using this
connect option. So, it may be that Accounting and Statistics messages are generated. This attribute allows
the user to choose whether to discard any messages relating to MQEV itself.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_ACCOUNTING_SELF.

Possible Values are:-

DISCARD
Don’t store any Accounting and Statistics data for MQEV itself.
The PCF value for this is MQG_ACCTSELF_DISCARD.

KEEP
Store Accounting and Statistics data for MQEV just like any other application.
The PCF value for this is MQG_ACCTSELF_KEEP.

Page 71

MQEV User Guide – Version 9.4.1

ALERTRET
The default retention interval, in days, for alerts. The initial value for this is 14 days.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_DEF_ALERT_RETENTION_INTERVAL.

AUTHDURN
The authorisation duration. The initial value for this is 10 seconds.

This parameter controls how long MQEV should cache a successful authority check for a user on the
basis that if a user passed the security check it is extremely likely they still have authority a few seconds
or even minutes later. By caching the response performance is improved.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_AUTH_DURATION.

DEADQ
The name of the dead-letter queue to use. If this is blank, the queue manager defined DEADQ is used.
The initial value for this field is blank. The maximum length of this string is MQ_Q_NAME_LENGTH
(48).

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_DEAD_LETTER_QUEUE.

DEFBOTHR
The default backout threshold that should be used. The initial value for this is 5. The default backout
threshold is used if the backout threshold defined on an Event Queue is zero. It is recommended that you
always operate with a non-zero backout threshold to allow for some level of operation difficulties. For
example a communications error can occur at any time, for a variety of reasons. It is not necessarily an
indication that something is seriously wrong and usually repairs itself. You don't want your messages to
be treated as 'poison' messages and written to a backout queue just because of a minor glitch.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_DEFAULT_BACKOUT_THRESHOLD.

DEFMAXRECS
The default number of source records which should be used to satisfy any DISPLAY command for
Accounting or Statistics data. This can prevent inadvertent consumption of CPU when issuing queries
against large amounts of data. The default value for this field is 1,000,000 (1 million).

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_DEFAULT_MAX_RECORDS.

DESCR
A text description of this MQEV instance. The maximum length of this string is
MQG_EV_DESC_LENGTH (64).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_EV_DESC.

DISPCMDS
How to handle command events received that record DISPLAY commands. IBM MQ will only produce
events for DISPLAY commands if the Queue Manager CMDEV attribute is set to ENABLED rather than
NODISPLAY.
When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_DISPLAY_COMMANDS.

Possible Values are:-

Page 72

MQEV User Guide – Version 9.4.1

DISCARD
Don’t store any DISPLAY command events. This is the initial value.
The PCF value for this is MQG_DISPCMDS_DISCARD.

HIDE
Store but don’t show any DISPLAY command events by default. This can be over-ridden on the
DISPLAY EVENTS command.
The PCF value for this is MQG_DISPCMDS_HIDE.

SHOW
Store and show DISPLAY command events.
The PCF value for this is MQG_DISPCMDS_SHOW.

LICREMIND
The time left on your MQEV licence, in days, after which you will begin to get reminders. Initially you
will receive weekly reminders, but once you have only 7 days left, then you will receive daily reminders.
These reminders will be in the form of alerts. The initial value for this is 60 days.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_LICENCE_REMIND_TIME.

LOGRET
The retention interval, in days, for MQEV log files14. The initial value is 7.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_LOG_RETENTION_INTERVAL.

MAXLOGAGE
The maximum age, in minutes, of an MQEV log file. A new log file will be created if the current log file
reaches this age. The initial value for this is 240 minutes.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MAX_LOG_AGE.

MAXLOGSZ
The maximum size, in kilobytes, of an MQEV log file. A new log file will be created if the current log file
reaches this size. This initial value for this is 10000.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MAX_LOG_SIZE.

NAME
The name of this MQEV instance. The maximum length of this string is MQG_EV_NAME_LENGTH
(8).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_EV_NAME.

STORMINT
The time period, in seconds, within which a number of identical events are received (configured by
STORMTHR) before it is considered to be an event storm. The initial value for this is 60 seconds.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_STORM_INTERVAL.

14 Note that MQEV will not delete log files created by a previous instance of MQEV.

Page 73

MQEV User Guide – Version 9.4.1

STORMTHR
The number of identical events received in a time period (configured by STORMINT) before it is
considered to be an event storm. The initial value for this is 20.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_STORM_THRESHOLD.

USEDLQ
Whether the Dead-letter queue should be used for unprocessed messages.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_USE_DEAD_LETTER_Q.

Possible values are:-

YES
The dead-letter queue, if named on either the EV object or on the IBM MQ QMgr object, is used
and any failure to place a dead-lettered message on the queue will cause the MQEV program to
end.
The PCF value for this is MQG_USEDLQ_YES.

NO
The dead-letter queue is not used. Messages found on the queues MQEV is processing, which are
not events or command messages, are forwarded (if used) and discarded.
The PCF value for this is MQG_USEDLQ_NO.

IFAVAIL
The dead-letter queue is used but any failure to place a dead-lettered message on the queue will not
cause the MQEV program to end and instead the message will be forwarded (if used) and
discarded. This is the initial value.
The PCF value for this is MQG_USEDLQ_IF_AVAIL.

VERCHECK
MQEV can check for newer versions of the product, and provide an alert when a newer version is
available.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_VERSION_CHECK.

Possible values are:-

NO
No check for newer versions of the MQEV product is made.
The PCF value for this is MQG_VERSION_CHECK_NO.

VERSION
A check is made for newer versions of the MQEV product, but not for newer build dates of the
current version.
The PCF value for this is MQG_VERSION_CHECK_VERSION.

BUILD
A check is made for newer versions and newer build dates of the MQEV product. This is the initial
value.
The PCF value for this is MQG_VERSION_CHECK_BUILD.

Page 74

MQEV User Guide – Version 9.4.1

13.5 ALTER EVEMIT
Use the MQSC command ALTER EVEMIT (or it's equivalent PCF command MQG_CMD_ALTER_EV_EMIT) to
change an emitter object.

A log file entry will be written by this command showing the alteration that was made.

N.B. If you attempt to ALTER an emitter object that doesn’t exist, it will fail.

13.5.1 Syntax diagram for ALTER EVEMIT

►►─ ALTER EVEMIT(emit-object-name) ─┬──────────────────────────────────────┬───►
 ├─ QUEUE(queue-name) ─ FILE(' ') ──┤
 └─ FILE(file-name) ─── QUEUE(' ') ─┘

►─┬────────────────────┬───┬────────────────────────────┬────────────────────────►
 └─ DESCR(string) ──┘ └─ FORMAT(─┬─ JSON ───┬─) ─┘
 ├─ NDJSON ─┤
 ├─ MQSC ───┤
 └─ CSV ────┘

►─┬────────────────────────────────┬────┬────────────────────────┬───────────────►
 └─ GROUPING(─┬─ ORIGINAL ─┬─) ─┘ └─ MAXSIZE(kilobytes) ─┘
 └─ SINGLE ───┘

►─┬──────────────────────────────┬──────┬──────────────────────────────┬─────────►
 └─ MSGPERS(─┬── ASMSG ──┬─) ─┘ └─ ONERROR(─┬─ BACKOUT ─┬─) ─┘
 ├─── NO ────┤ └─ SUSPEND ─┘
 └─── YES ───┘

►─┬────────────────────────────┬────────┬──────────────────────────────┬─────────►
 └─ PUT(─┬─ NORMAL ────┬─) ─┘ └─ READER(─┬─ HUMAN ───┬─) ──┘
 └─ IMMEDIATE ─┘ └─ PROGRAM ─┘

►─┬────────────────────────────┬──►◄
 └─ ZEROVALS(─┬─ HIDE ─┬─) ─┘
 └─ SHOW ─┘

13.5.2 Parameter descriptions for ALTER EVEMIT

(emit-object-name)
The name of the emitter object whose configuration is to be altered. The maximum length of this string is
MQG_EMIT_NAME_LENGTH (48).

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EMIT_NAME.

QUEUE
The queue to emit data to. Only one of QUEUE or FILE can be specified. If you are altering an emitter
object that currently has a file name defined, you must blank out that attribute at the same time as setting
the queue name. The maximum length of this string is MQ_Q_NAME_LENGTH (48).

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EMIT_Q_NAME.

Page 75

MQEV User Guide – Version 9.4.1

FILE
The file name to emit data to. Only one of QUEUE of FILE can be specified. If you are altering an
emitter object that currently has a queue name defined, you must blank out that attribute at the same time
as setting the file name. The maximum length of this string is MQG_FILE_NAME_LENGTH (300).

The file name can contain inserts to ensure each new file name is unique. These inserts are described in
8.4.1 Emitter Filename Inserts on page 50.

On z/OS, file names must be provided directly, and not use DD names, and must be z/OS UNIX files.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EMIT_FILE_NAME.

DESCR
A text description of the emit object. The maximum length of this string is MQ_APPL_DESC_LENGTH
(64).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_EMIT_DESC.

FORMAT
The format that the data will be emitted in.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_EMIT_FORMAT.

Possible values are:-

JSON
Data will be emitted in JSON format.
The PCF value for this is MQG_FORMAT_JSON.

NDJSON
Data will be emitted in Newline Delimited JSON format.
The PCF value for this is MQG_FORMAT_NDJSON.

MQSC
Data will be emitted in MQSC format.
The PCF value for this is MQG_FORMAT_MQSC.

CSV
Data will be emitted in comma separated values (CSV) format.
The PCF value for this is MQG_FORMAT_CSV.

GROUPING
Accounting Queue, Statistic Queue and Statistics Channel messages from MQ may contain multiple
object information in a single message. This is done for efficiency reasons since a separate message for
each object would clearly require a lot more processing. You can configure the emitter to continue this
grouping or to split each object into a separate emission. It is more efficient to maintain the grouping but
it may be that the downstream application can only deal with one object at a time.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_EMIT_GROUPING.

Possible values are:-

ORIGINAL
The grouping provided by MQ is maintained.
The PCF value for this is MQG_EMIT_GROUPING_ORIGINAL.

SINGLE
Output will be split into separate outputs if using a queue as output or a file using the %i insert.
The PCF value for this is MQG_EMIT_GROUPING_SINGLE.

Page 76

MQEV User Guide – Version 9.4.1

MAXSIZE
For a queue emitter, this is the maximum size of emitted message written to the queue.

For a file emitter, this is the maximum size of the file, after which point a new file will be created with a
unique name.

The size is measured in kilobytes.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_MAX_SIZE.

MSGPERS
The persistence of messages written to the queue. This attribute only applies when the QUEUE attribute
is used.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MSG_PERSISTENCE.

Possible values are:

ASMSG
Messages have the same persistence as the original event message.
The PCF value for this is MQG_PERSISTENCE_AS_MESSAGE.

YES
Messages are persistent.
The PCF value for this is MQG_PERSISTENCE_YES.

NO
Messages are non-persistent
The PCF value for this is MQG_PERSISTENCE_NO.

ONERROR
How to behave if an attempt to write to the queue or file specified fails. If MQEV is configured to use the
Dead Letter Queue, then this is considered a success and the behaviour described here does not apply. If
the DLQ is not being used, or if writing to the DLQ fails, then the behaviour described below will apply.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_ON_ERROR.

Possible values are:-

SUSPEND
The message read from the EVQ is backed out and the EVQ is suspended. An alert is raised to
indicate the problem. The ERRORCT value will be incremented each time this happens. Once the
issue has been rectified, the administrator should use the RESUME EVQ command to indicate to
MQEV that the queue can be processed again.
The PCF value for this is MQG_ONERROR_SUSPEND.

DISCARD
The emitted message, which could not be written to the queue or file, is discarded. An alert is
raised to indicate the problem. This will result in gaps in the emitted stream of data but will not
cause the suspension of event processing. The ERRORCT value will be incremented for each
message that is discarded in this way.
The PCF value for this is MQG_ONERROR_DISCARD.

PUT
The transactionality used when putting messages to the emitter queue. This attribute is ignored if this
emitter is writing to a file.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_PUT_TRANSACT.

Page 77

MQEV User Guide – Version 9.4.1

Possible values are:-

NORMAL
The messages put to the emitter queue are part of the same transaction as writing the data to the
MQEV data queue. If any failure occurs and this transaction is rolled back, so are the messages put
to the emitter queue. This means that no duplicate messages can occur on the emitter queue, but
also means that the availability of messages on the emitter queue is no sooner than the completion
of the transaction processing the event message data stored to the MQEV data queue.
The PCF value for this is MQG_PUT_NORMAL.

IMMEDIATE
The messages put to the emitter queue are put outside of a transaction and are immediately
available to be consumed and posted elsewhere. While this improves the availability of these
messages, there is the possibility of duplicate messages on this queue should the transaction writing
the event message data to the MQEV data queue be rolled back and re-processed. See 8.3.3.1
Unique ID on page 49 for more information about handling these possible duplicates.
The PCF value for this is MQG_PUT_IMMEDIATE.

READER
Whether the data is compressed or retains all the spaces and newlines to be more “human readable”.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_READER.

Possible values are:

PROGRAM
The data is designed to be read by a computer program. It is compressed and all extraneous
newlines and spaces are removed. The data is all on one line.
The PCF value for this is MQG_READER_PROGRAM.

HUMAN
The data is designed to be human readable and contains newlines and spaces that are not essential
but make the layout easier to read for human beings.
The PCF value for this is MQG_READER_HUMAN.

ZEROVALS
How to handle zero or empty values in the messages emitted.
This parameter does not apply for emitters of type CSV.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_ZERO_VALUES.

Possible values are:-

HIDE
Do not include any zero values or empty strings in the messages.
The PCF value for this is MQG_ZEROVALS_HIDE.

SHOW
Include zero values and empty strings in the messages.
The PCF value for this is MQG_ZEROVALS_SHOW

Page 78

MQEV User Guide – Version 9.4.1

13.6 ALTER EVQ
Use the MQSC command ALTER EVQ (or it's equivalent PCF command MQG_CMD_ALTER_EV_Q) to change the
MQEV details regarding a queue that is being processed by the MQEV event processor.

A log file entry will be written by this command showing the alteration that was made.

N.B. If you attempt to ALTER a queue that doesn’t exist, it will fail.

13.6.1 Syntax diagram for ALTER EVQ

►►─ ALTER EVQ(queue-name) ─┬───────────────────┬─┬──────────────────┬───────►
 └─ DESCR(string) ─┘ └─ FWDQ(string) ─┘

►──┬─────────────────────────────┬─────┬────────────────────────────┬─────────►◄
 └─ FWDPSIST(─┬─ ASMSG ─┬─) ─┘ └─ TEMPQ(─┬─ DISCARD ─┬─) ─┘
 ├─ YES ───┤ └─ STORE ───┘
 └─ NO ────┘

13.6.2 Parameter descriptions for ALTER EVQ

(queue-name)
The name of the event queue whose configuration is to be altered. The maximum length of this string is
MQ_Q_NAME_LENGTH (48).

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EVENT_Q_NAME.

DESCR
A description of the queue being processed by MQEV. The maximum length of this string is
MQ_Q_DESC_LENGTH (64).

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EVENT_Q_DESC.

FWDPSIST
The persistence that should be used for messages that are forwarded to the queue named in the FWDQ
attribute.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_FORWARD_PERSISTENCE.

Possible Values are:-

ASMSG
Forwarded messages have the same persistence as the original message.
The PCF value for this is MQG_PERSISTENCE_AS_MESSAGE.

YES
Forwarded message are persistent.
The PCF value for this is MQG_PERSISTENCE_YES.

NO
Forwarded messages are non-persistent.
The PCF value for this is MQG_PERSISTENCE_NO.

Page 79

MQEV User Guide – Version 9.4.1

FWDQ
The queue name messages should be forwarded to for daisy-chaining purposes. The maximum length of
this string is MQ_Q_NAME_LENGTH (48). If provided this queue will be opened with
MQOO_PASS_ALL_CONTEXT.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_FORWARD_Q_NAME.

TEMPQ
How statistics records about temporary queues are handled.

It is only currently possible to determine when a queue is temporary through the statistics records. For
accounting and events, it is not possible to tell and therefore this attribute will have no effect.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_TEMPQ_DISP.

Possible Values are:-

DISCARD
Records about temporary queues are discarded.
The PCF value for this is MQG_TEMPQ_DISCARD.

STORE
Records about temporary queues are stored.
The PCF value for this is MQG_TEMPQ_STORE.

Page 80

MQEV User Guide – Version 9.4.1

13.7 ALTER EVSTREAM
Use the MQSC command ALTER EVSTREAM (or it's equivalent PCF command MQG_CMD_ALTER_EV_STREAM) to
change a stream.

Streams are used to store the records (events, accounting and statistics) processed by MQEV.

A log file entry will be written by this command showing the stream that was changed.

13.7.1 Syntax diagram for ALTER EVSTREAM

►►─ ALTER EVSTREAM(stream-name) ───┬──────────────────────────────┬─────────►
 └─── TYPE(─┬─ EVENTS ──┬─) ──┘
 ├─ STATQ ───┤
 ├─ STATCHL ─┤
 ├─ STATMQI ─┤
 ├─ ACCTQ ───┤
 └─ ACCTMQI ─┘

►───┬──────────────────────┬────────┬──────────────────────────┬──────────────►
 └─ AGGRINT(integer) ─┘ └─ DEFAULT(─┬─ YES──┬─) ─┘
 └─ NO ──┘
►───┬──────────────────┬────────────┬────────────────────────────┬────────────►
 └─ DESCR(string)─┘ └─ DISIMPLCT(─┬─ YES──┬─) ─┘
 └─ NO ──┘
►───┬───────────────────────────────┬───┬────────────────────────┬───────────►◄
 └─ EVEMIT(emit-object-name) ──┘ └─ RETINTVL(integer) ──┘

13.7.2 Parameter descriptions for ALTER EVSTREAM

(stream-name)
The name of the stream to be altered. The maximum length of this string is
MQG_STREAM_NAME_LENGTH (64).

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_STREAM_NAME.

TYPE
The type of data that is stored on this stream. This attribute is optional, and only required if the stream
name is not a unique reference to the stream object being altered.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_STREAM_TYPE.

Possible values are:-

EVENTS
This stream contains event data.
The PCF value for this is MQG_STREAM_TYPE_EVENTS.

STATQ
This stream contains queue statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_Q.

STATCHL
This stream contains channel statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_CHL.

Page 81

MQEV User Guide – Version 9.4.1

STATMQI
This stream contains MQI statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_MQI.

ACCTQ
This stream contains queue accounting data.
The PCF value for this is MQG_STREAM_TYPE_ACCT_Q.

ACCTMQI
This stream contains MQI accounting data.
The PCF value for this is MQG_STREAM_TYPE_ACCT_MQI.

AGGRINT
The aggregation interval for this stream (in seconds). By default the value is zero meaning no
aggregation. This parameter is not applicable to EVENTS type streams since MQ events can not be
aggregated.

For more information about aggregation please see Chapter 6:Aggregation described on page 39.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_AGGR_INTERVAL.

DEFAULT
Whether this stream is to be the default stream. Only one stream of each type has the value
DEFAULT(YES). If you alter another stream to have DEFAULT(YES), the current default stream for that
type is changed to DEFAULT(NO).

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_DEFAULT_STREAM.

Possible values are:-

YES
This stream is the default stream.
The PCF value for this is MQG_DEFAULT_YES.

NO
This stream is not the default stream.
The PCF value for this is MQG_DEFAULT_NO.

DESCR
A text description of the stream. The maximum length of this string is MQ_APPL_DESC_LENGTH (64).

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_STREAM_DESC.

Page 82

MQEV User Guide – Version 9.4.1

DISIMPLCT
Whether this stream is to be display by default or whether it should be selected explicitly. Generally
speaking there should always be at least one stream, of each type, that is defined as the display implicit
stream. If you have an implementation where your data is separated into multiple streams on arrival then
it is perfectly reasonable to have more than one stream defined as implicit display.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_DISPLAY_IMPLICIT.

Possible values are:-

YES
This stream should be displayed implicitly.
The PCF value for this is MQG_DISPLAY_IMPLICIT_YES.

NO
This stream should not be displayed implicitly.
The PCF value for this is MQG_DISPLAY_IMPLICIT_NO.

EVEMIT
The name of an EVEMIT object which controls how data on this stream is additionally emitted. If this
field is blank it means data is not emitted in any format. The maximum length of this string is
MQG_EMIT_NAME_LENGTH.

The named emit object must exist or the ALTER command will fail.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EMIT_NAME.

RETINTVL
The retention interval for data on this stream (in days).

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_RETENTION_INTERVAL.

Page 83

MQEV User Guide – Version 9.4.1

13.8 COPY EVSTRMST
Use the MQSC command COPY EVSTRMST (or it's equivalent PCF command
MQG_CMD_COPY_EV_STREAM_STATUS) to copy the contents of one stream to another. This can be useful for a
number of situations, such as:

• When you wish to start consuming messages with multiple aggregation settings.
Please see Chapter 6 Aggregation on page 39 for a discussion of aggregation and in particular the section
on Multiple Streams.

• When you wish to take a copy of an existing stream, perhaps for back-up purposes

The target stream must be defined, empty and of the same type as the source stream.

Note that any emitters defined on the target stream will not be called for any copied data since this data has
probably already been emitted.

If the source stream contains a lot of data then this command can take a long time to complete. If it takes more than
a few seconds then MQEV will start sending regular progress messages to tell the command issuer how far through
the copy operation it has got and how long it expects to take to completion.

A log file entry will be written by this command showing the stream that was copied.

13.8.1 Syntax diagram for COPY EVSTRMST

►►─ COPY EVSTRMST(stream-name) ────────── TARGET(stream-name) ───────────────►

►─────┬──────────────────────────────┬───────EVQMGR(qmgr-name) ───────────────►◄
 └─── TYPE(─┬─ EVENTS ──┬─) ──┘
 ├─ STATQ ───┤
 ├─ STATCHL ─┤
 ├─ STATMQI ─┤
 ├─ ACCTQ ───┤
 └─ ACCTMQI ─┘

13.8.2 Parameter descriptions for ALTER EVSTREAM

(stream-name)
The name of the stream status to be copied.
The maximum length of this string is MQG_STREAM_NAME_LENGTH (64).

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_STREAM_NAME.

TARGET
The name of the stream to copy the items to. The stream must already defined of the same type as the
source and be currently empty.
The maximum length of this string is MQG_STREAM_NAME_LENGTH (64).

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_TARGET_STREAM_NAME.

TYPE
This option parameter is only necessary if there is more than one source stream with the same name.

Page 84

MQEV User Guide – Version 9.4.1

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_STREAM_TYPE.

Possible values are:-

EVENTS
This stream contains event data.
The PCF value for this is MQG_STREAM_TYPE_EVENTS.

STATQ
This stream contains queue statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_Q.

STATCHL
This stream contains channel statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_CHL.

STATMQI
This stream contains MQI statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_MQI.

ACCTQ
This stream contains queue accounting data.
The PCF value for this is MQG_STREAM_TYPE_ACCT_Q.

ACCTMQI
This stream contains MQI accounting data.
The PCF value for this is MQG_STREAM_TYPE_ACCT_MQI.

EVQMGR
The queue manager associated with the stream-name to be copied.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_Q_MGR_NAME.

Page 85

MQEV User Guide – Version 9.4.1

13.9 DEFINE EVEMIT
Use the MQSC command DEFINE EVEMIT (or it's equivalent PCF command MQG_CMD_DEFINE_EV_EMIT) to
create an emitter object.

A log file entry will be written by this command showing the emitter that was created.

13.9.1 Syntax diagram for DEFINE EVEMIT

►►─ DEFINE EVEMIT(emit-object-name) ─┬─ QUEUE(queue-name) ─┬──┬───────────┬───►
 └─ FILE(file-name) ───┘ └─ REPLACE ─┘

 ┌─ DESCR(' ') ─────┐ ┌─ GROUPING(ORIGINAL) ─┐
►──┼────────────────────┼───FORMAT(─┬ JSON ──┬─)───┼────────────────────────┼─────►
 └─ DESCR(string) ──┘ ├ NDJSON ┤ └─ GROUPING(SINGLE) ───┘
 ├ MQSC ──┤
 └ CSV ───┘

 ┌─ MAXSIZE(100) ───────┐ ┌─ MSGPERS(ASMSG) ─┐ ┌─ ONERROR(SUSPEND) ──┐
►──┼────────────────────────┼──┼────────────────────┼──┼───────────────────────┼──►
 └─ MAXSIZE(kilobytes) ─┘ ├─ MSGPERS(YES) ───┤ └─ ONERROR(DISCARD) ──┘
 └─ MSGPERS(NO) ────┘

 ┌─ PUT(NORMAL) ─────┐ ┌─ READER (PROGRAM) ─┐ ┌─ ZEROVALS(HIDE) ─┐
►──┼─────────────────────┼──┼──────────────────────┼──┼────────────────────┼─────►◄
 └─ PUT(IMMEDIATE) ──┘ └─ READER (HUMAN) ───┘ └─ ZEROVALS(SHOW) ─┘

13.9.2 Parameter descriptions for DEFINE EVEMIT

(emit-object-name)
The name of the emit object to be created. The maximum length of this string is
MQG_EMIT_NAME_LENGTH

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_EMIT_NAME
(48).

QUEUE
The queue to emit data to. Only one of QUEUE or FILE can be specified.

The maximum length of this string is MQ_Q_NAME_LENGTH (48).

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EMIT_Q_NAME.

FILE
The file name to emit data to. Only one of QUEUE of FILE can be specified.

The maximum length of this string is MQG_FILE_NAME_LENGTH (300).

The file name can contain inserts to ensure each new file name is unique. These inserts are described in
8.4.1 Emitter Filename Inserts on page 50.

On z/OS, file names must be provided directly, and not use DD names, and must be z/OS UNIX files.

When using the PCF interface, this is an MQCFST parameter with identified
MQG_ATTR_EMIT_FILE_NAME.

Page 86

MQEV User Guide – Version 9.4.1

DESCR
A text description of the emit object. The maximum length of this string is MQ_APPL_DESC_LENGTH
(64).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_EMIT_DESC.

FORMAT
The format that the data will be emitted in.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_EMIT_FORMAT.

There is no default value for this parameter, it must be specified at creation time. Possible values are:-

JSON
Data will be emitted in JSON format.
The PCF value for this is MQG_FORMAT_JSON.

NDJSON
Data will be emitted in Newline Delimited JSON format.
The PCF value for this is MQG_FORMAT_NDJSON.

MQSC
Data will be emitted in MQSC format.
The PCF value for this is MQG_FORMAT_MQSC.

CSV
Data will be emitted in comma separated values (CSV) format.
The PCF value for this is MQG_FORMAT_CSV.

GROUPING
Accounting Queue, Statistic Queue and Statistics Channel messages from MQ may contain multiple
object information in a single message. This is done for efficiency reasons since a separate message for
each object would clearly require a lot more processing. You can configure the emitter to continue this
grouping or to split each object into a separate emission. It is more efficient to maintain the grouping but
it may be that the downstream application can only deal with one object at a time.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_EMIT_GROUPING.

Possible values are:-

ORIGINAL
The grouping provided by MQ is maintained.
The PCF value for this is MQG_EMIT_GROUPING_ORIGINAL.

SINGLE
Output will be split into separate outputs if using a queue as output or a file using the %i insert.
The PCF value for this is MQG_EMIT_GROUPING_SINGLE.

MAXSIZE
The maximum size of an emitted message written to the queue or file, in kilobytes.

The default value is 100 kilobytes

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_MAX_SIZE

Page 87

MQEV User Guide – Version 9.4.1

MSGPERS
The persistence of messages written to the queue. This attribute only applies when the QUEUE attribute
is used.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MSG_PERSISTENCE.

Possible values are:

ASMSG
Messages have the same persistence as the original event message. This is the default value.
The PCF value for this is MQG_PERSISTENCE_AS_MESSAGE.

YES
Messages are persistent.
The PCF value for this is MQG_PERSISTENCE_YES.

NO
Messages are non-persistent
The PCF value for this is MQG_PERSISTENCE_NO.

ONERROR
How to behave if an attempt to write to the queue or file specified fails. If MQEV is configured to use the
Dead Letter Queue, then this is considered a success and the behaviour described here does not apply. If
the DLQ is not being used, or if writing to the DLQ fails, then the behaviour described below will apply.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_ON_ERROR.

Possible values are:-

SUSPEND
The message read from the EVQ is backed out and the EVQ is suspended. An alert is raised to
indicate the problem. The ERRORCT value will be incremented each time this happens. Once the
issue has been rectified, the administrator should use the RESUME EVQ command to indicate to
MQEV that the queue can be processed again.
The PCF value for this is MQG_ONERROR_SUSPEND.

DISCARD
The emitted message, which could not be written to the queue or file, is discarded. An alert is
raised to indicate the problem. This will result in gaps in the emitted stream of data but will not
cause the suspension of event processing. The ERRORCT value will be incremented for each
message that is discarded in this way.
The PCF value for this is MQG_ONERROR_DISCARD.

PUT
The transactionality used when putting messages to the emitter queue. This attribute is ignored if this
emitter is writing to a file.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_PUT_TRANSACT.

Possible values are:-

NORMAL
The messages put to the emitter queue are part of the same transaction as writing the data to the
MQEV data queue. If any failure occurs and this transaction is rolled back, so are the messages put
to the emitter queue. This means that no duplicate messages can occur on the emitter queue, but
also means that the availability of messages on the emitter queue is no sooner than the completion
of the transaction processing the event message data stored to the MQEV data queue. This is the
default value.
The PCF value for this is MQG_PUT_NORMAL.

Page 88

MQEV User Guide – Version 9.4.1

IMMEDIATE
The messages put to the emitter queue are put outside of a transaction and are immediately
available to be consumed and posted elsewhere. While this improves the availability of these
messages, there is the possibility of duplicate messages on this queue should the transaction writing
the event message data to the MQEV data queue be rolled back and re-processed. See 8.3.3.1
Unique ID on page 49 for more information about handling these possible duplicates.
The PCF value for this is MQG_PUT_IMMEDIATE.

READER
Whether the data is compressed or retains all the spaces and newlines to be more “human readable”.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_READER.

Possible values are:

PROGRAM
The data is designed to be read by a computer program. It is compressed and all extraneous
newlines and spaces are removed. The data is all on one line. This is the default value.
The PCF value for this is MQG_READER_PROGRAM.

HUMAN
The data is designed to be human readable and contains newlines and spaces that are not essential
but make the layout easier to read for human beings.
The PCF value for this is MQG_READER_HUMAN.

ZEROVALS
How to handle zero values in the messages emitted.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_ZERO_VALUES.

Possible values are:-

HIDE
Do not include any zero values in the messages. This is the default value
The PCF value for this is MQG_ZEROVALS_SHOW.

SHOW
Include zero values in the messages.
The PCF value for this is MQG_ZEROVALS_SHOW.

REPLACE
Whether the existing emitter configuration is to be replaced with this one. This is optional. The default is
not to replace the emitter configuration. When specified the emitter replaces the existing one with the
same name. If a matching emitter configuration does not exist, one is added.

When using the PCF interface, this is an MQCFIN parameter with identifier MQIACF_REPLACE.

Page 89

MQEV User Guide – Version 9.4.1

13.10 DEFINE EVSTREAM
Use the MQSC command DEFINE EVSTREAM (or it's equivalent PCF command MQG_CMD_DEFINE_EV_STREAM)
to create a stream.

Streams are used to store the records (events, accounting and statistics) processed by MQEV.

A log file entry will be written by this command showing the stream that was created.

13.10.1 Syntax diagram for DEFINE EVSTREAM

►►─ DEFINE EVSTREAM(stream-name) ───────── TYPE(─┬─ EVENTS ──┬─) ───────────►
 ├─ STATQ ───┤
 ├─ STATCHL ─┤
 ├─ STATMQI ─┤
 ├─ ACCTQ ───┤
 └─ ACCTMQI ─┘
 ┌── AGGRINT(0) ──────┐ ┌─ DEFAULT(NO) ───┐ ┌─ DESCR(' ') ────┐
►───┼──────────────────────┼──┼───────────────────┼──┼───────────────────┼──────►
 └── AGGRINT(integer)─┘ └─ DEFAULT(YES) ──┘ └─ DESCR(string) ─┘

 ┌─ DISIMPLCT(NO) ──┐ ┌─ DESCR(' ') ────┐
►───┼────────────────────┼────┼───────────────────┼───────┬───────────┬─────────►
 └─ DISIMPLCT(YES) ─┘ └─ DESCR(string) ─┘ └─ REPLACE ─┘

 ┌─ EVEMIT(' ') ──────────────┐ ┌─ RETINTVL(default-retintvl) ──┐
►───┼──────────────────────────────┼───┼─────────────────────────────────┼─────►◄
 └─ EVEMIT(emit-object-name) ─┘ └─ RETINTVL(integer) ───────────┘

13.10.2 Parameter descriptions for DEFINE EVSTREAM

(stream-name)
The name of the stream to be created. The maximum length of this string is
MQG_STREAM_NAME_LENGTH (64).

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_STREAM_NAME.

TYPE
The type of data that will be stored on this stream. This attribute cannot be altered.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_STREAM_TYPE.

Possible values are:-

EVENTS
This stream will contain event data. Displaying the data on this stream is done using the DISPLAY
EVENTS command.
The PCF value for this is MQG_STREAM_TYPE_EVENTS.

STATQ
This stream will contain queue statistics data. Displaying the data on this stream is done using the
DISPLAY STATQ command.
The PCF value for this is MQG_STREAM_TYPE_STAT_Q.

Page 90

MQEV User Guide – Version 9.4.1

STATCHL
This stream will contain channel statistics data. Displaying the data on this stream is done using the
DISPLAY STATCHL command.
The PCF value for this is MQG_STREAM_TYPE_STAT_CHL.

STATMQI
This stream will contain MQI statistics data. Displaying the data on this stream is done using the
DISPLAY STATMQI command.
The PCF value for this is MQG_STREAM_TYPE_STAT_MQI.

ACCTQ
This stream will contain queue accounting data. Displaying the data on this stream is done using
the DISPLAY ACCTQ command.
The PCF value for this is MQG_STREAM_TYPE_ACCT_Q.

ACCTMQI
This stream will contain MQI accounting data. Displaying the data on this stream is done using the
DISPLAY ACCTMQI command.
The PCF value for this is MQG_STREAM_TYPE_ACCT_MQI.

AGGRINT
The aggregation interval for this stream (in seconds). By default the value is zero meaning no
aggregation. This parameter is not applicable to EVENTS type streams since MQ events can not be
aggregated.

For more information about aggregation please see Chapter 6:Aggregation described on page 39.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_AGGR_INTERVAL.

DEFAULT
Whether this stream is to be the default stream. Only one stream of each type has the value
DEFAULT(YES). If you create another stream to have DEFAULT(YES) the current default stream for
that type is changed to DEFAULT(NO).

If no streams are nominated as default, a stream is automatically created and set to be the default when
one is needed. See Chapter 5: Streams on page 36 for the default names.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_DEFAULT_STREAM.

Possible values are:-

YES
This stream is the default stream.
The PCF value for this is MQG_DEFAULT_YES.

NO
This stream is not the default stream.
The PCF value for this is MQG_DEFAULT_NO.

DESCR
A text description of the stream. The maximum length of this string is MQ_APPL_DESC_LENGTH (64).
Automatically generated streams have a description of “Auto-defined on date”.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_STREAM_DESC.

Page 91

MQEV User Guide – Version 9.4.1

DISIMPLCT
Whether this stream is to be display by default or whether it should be selected explicitly.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_DISPLAY_IMPLICIT.

Possible values are:-

YES
This stream should be displayed implicitly.
The PCF value for this is MQG_DISPLAY_IMPLICIT_YES.

NO
This stream should not be displayed implicitly.
The PCF value for this is MQG_DISPLAY_IMPLICIT_NO.

EVEMIT
The name of an EVEMIT object which controls how data on this stream is additionally emitted. The
default value for this field is blank which means data is not emitted in any format. The maximum length
of this string is MQG_EMIT_NAME_LENGTH.

The named emit object must exist or the DEFINE command will fail.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EMIT_NAME.

RETINTVL
The retention interval for data on this stream (in days). If not specified the default value is taken from the
RETINTVL on the default EVSTREAM of the same type.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_RETENTION_INTERVAL.

REPLACE
Whether the existing stream configuration is to be replaced with this one. This is optional. The default is
not to replace the stream configuration. When specified the stream replaces the existing one with the same
name. If a matching stream configuration does not exist, one is added.

When using the PCF interface, this is an MQCFIN parameter with identifier MQIACF_REPLACE.

Page 92

MQEV User Guide – Version 9.4.1

13.11 DELETE EVEMIT
Use the MQSC command DELETE EVEMIT (or it's equivalent PCF command MQG_CMD_DELETE_EV_EMIT) to
remove an emit object.

If the emit object to be deleted is currently referenced in an EVSTREAM object, the deletion will fail with an 'in use'
error.

A log file entry will be written by this command showing the emit object that was removed.

13.11.1 Syntax diagram for DELETE EVEMIT

►►─ DELETE EVEMIT(emit-object-name) ────────────────────────────────────►◄

13.11.2 Parameter descriptions for DELETE EVEMIT

(emit-object-name)
The name of the emit object to be deleted. The maximum length of this string is
MQG_EMIT_NAME_LENGTH (48).

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EMIT_NAME.

Page 93

MQEV User Guide – Version 9.4.1

13.12 DELETE EVSTREAM
Use the MQSC command DELETE EVSTREAM (or it's equivalent PCF command MQG_CMD_DELETE_EV_STREAM)
to remove a stream.

Streams are used to store the records (events, accounting and statistics) processed by MQEV. Streams can only be
deleted if they are empty i.e. do not contain any records.

A log file entry will be written by this command showing the stream that was removed.

13.12.1 Syntax diagram for DELETE EVSTREAM

►►─ DELETE EVSTREAM(stream-name) ─────┬──────────────────────────────┬───────►◄
 └─── TYPE(─┬─ EVENTS ──┬─) ──┘
 ├─ STATQ ───┤
 ├─ STATCHL ─┤
 ├─ STATMQI ─┤
 ├─ ACCTQ ───┤
 └─ ACCTMQI ─┘

13.12.2 Parameter descriptions for DELETE EVSTREAM

(stream-name)
The name of the stream to be deleted. The maximum length of this string is
MQG_STREAM_NAME_LENGTH (64). When using the PCF interface, this is an MQCFST parameter
with identifier MQG_ATTR_STREAM_NAME.

TYPE
The type of data that is stored on this stream. This attribute is optional, and only required if the stream
name is not a unique reference to the stream object being deleted.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_STREAM_TYPE.

Possible values are:-

EVENTS
This stream contains event data. The PCF value for this is MQG_STREAM_TYPE_EVENTS.

STATQ
This stream contains queue statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_Q.

STATCHL
This stream contains channel statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_CHL.

STATMQI
This stream contains MQI statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_MQI.

ACCTQ
This stream contains queue accounting data.
The PCF value for this is MQG_STREAM_TYPE_ACCT_Q.

ACCTMQI
This stream contains MQI accounting data.
The PCF value for this is MQG_STREAM_TYPE_ACCT_MQI.

Page 94

MQEV User Guide – Version 9.4.1

13.13 DISPLAY ACCTMQI
Use the MQSC command DISPLAY ACCTMQI (or it's equivalent PCF command MQG_CMD_DISPLAY_ACCT_MQI)
to display the MQI accounting records processed and stored by MQEV. For a description of the accounting fields
provided by MQ please read the MQ documentation

13.13.1 Syntax diagram for DISPLAY ACCTMQI

►►─ DISPLAY ACCTMQI(wildcarded-appl-name) ─┬───────────────────────┬─────────────────►
 └─ EVQMGR(qmgr-name) ─┘

 ┌─ GAPFILL(NO) ───────────────┐ ┌─ SUM(APPL) ──────────────┐
►───┼───────────────────────────────┼────┼────────────────────────────┼────────────────►
 └─ GAPFILL(─┬─ INNER ────┬─) ─┘ ├─ SUM(─┬─ NONE ─────┬──) ─┤
 ├─ ACTIVITY ─┤ │ └─ TOTAL ────┘ │
 └─ FULL ─────┘ │ ┌─,────────────┐ │
 │ ↓ │ │
 └─ SUM(─┬─ APPL ─────┬┴─) ─┘
 ├─ CHANNEL ──┤
 ├─ CONNAME ──┤
 ├─ USERID ───┤
 ├─ RPRODUCT ─┤
 ├─ RVERSION ─┤
 ├─ PID ──────┤
 ├─ TID ──────┤
 ├─ STREAM ───┤
 └─ CONNID ───┘

 ┌─ FROM('-24h') ────────┐ ┌─ TO('now') ─────────┐ ┌─ TZ(0) ───────┐
►───┼─────────────────────────┼──┼───────────────────────┼──┼─────────────────┼────────►
 └─ FROM(date-and-time) ─┘ └─ TO(date-and-time) ─┘ └─ TZ(integer) ─┘

 ┌─ COLLATE(NONE) ──────┐ ┌─ ZEROVALS(HIDE) ─┐
►───┼────────────────────────┼───┼────────────────────┼───┬────────────────────┬───────►
 └─ COLLATE(collation) ─┘ └─ ZEROVALS(SHOW) ─┘ └── TITLE(title) ──┘

►───┬────────────────────────┬───►
 └─ INTVL(time-period) ─┘

►───┬─────────────────────────────────────┬──┬─────────────────────────────────────┬───►
 └─ INTVLSTA(date-and-time-seconds) ─┘ └─ INTVLEND(date-and-time-seconds) ─┘

►───┬────────────────────────────┬───┬───────────────────────────────┬─────────────────►
 └─ WHERE(FilterCondition) ─┘ └─ PREWHERE(FilterCondition) ─┘

 ┌─ MAXRECS(ev-value) ─┐ ┌─ MAXRESP(100) ─────┐
►───┼───────────────────────┼─┼──────────────────────┼──┬────────────────┬──┬───────┬──►◄
 └─ MAXRECS(integer) ─┘ └─ MAXRESP(integer) ─┘ └─┤ attributes ├─┘ └─ ALL ─┘

Page 95

https://www.ibm.com/docs/en/ibm-mq/latest?topic=reference-mqi-accounting-message-data

MQEV User Guide – Version 9.4.1

13.13.2 Parameter descriptions for DISPLAY ACCTMQI

(wildcarded-appl-name)
The application name for which accounting records are to be displayed. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier MQCACF_APPL_NAME.

EVQMGR
The queue manager associated with the records to be displayed.

This parameter is used to specify which queue manager you wish to see data from. If it is not specified,
the output shows records from the queue manager you are connected to.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_Q_MGR_NAME.

GAPFILL
Whether to add zeroed records where none exist to produce a set of records that will graph appropriately.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_GAP_FILL.

Possible Values are:-

NO
Do not fill in the gaps with zeroed records.
The PCF value for this is MQG_GAPFILL_NO.

INNER
Produce zeroed records for inner gaps in the set of records.
The PCF value for this is MQG_GAPFILL_INNER.

ACTIVITY
Add zeroed records to produce a set of records that spans the time period where there is any
activity on this queue, not just the activity shown by the attributes displayed.
The PCF value for this is MQG_GAPFILL_ACTIVITY.

FULL
Add zeroed records to produce a set of records that spans the entire time period requested.
The PCF value for this is MQG_GAPFILL_FULL

SUM
Whether the records are summed together, and if so how they are totalled. Multiple values can be
provided in a comma-separated list, except where indicated that a value cannot be combined with any
others.

When multiple values are provided, a record will be returned for each unique combination, e.g.
SUM(APPL, CHANNEL) will return one record for each unique combination of application name and
channel name.

When using the PCF interface, this can be an MQCFIN parameter (should you only need to supply one
value) or an MQCFIL parameter (should you need to supply multiple values) with identifier
MQG_ATTR_SUM.

When any of the SUM values apart from NONE and TOTAL are used without the INTVL attribute, this will
result in a single record per unique key combination being returned. If used with the INTVL attribute, one
record per application will be returned for each interval.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Page 96

MQEV User Guide – Version 9.4.1

Possible Values are:-

NONE
Do not add together any records. The command returns each individual record as reported by IBM
MQ. This value cannot be combined with any others.
The PCF value for this is MQG_SUM_NONE.

APPL
A record will be returned for each unique application name. This is the default value.
The PCF value for this is MQG_SUM_APPLICATION_NAME.

CHANNEL
A record will be returned for each unique channel name.
The PCF value for this is MQG_SUM_CHANNEL_NAME.

CONNAME
A record will be returned for each unique connection name.
The PCF value for this is MQG_SUM_CONNECTION_NAME.

USERID
A record will be returned for each unique user identifier.
The PCF value for this is MQG_SUM_USER_ID.

PID
A record will be returned for each unique process identifier.
The PCF value for this is MQG_SUM_PID.

TID
A record will be returned for each unique thread identifier.
The PCF value for this is MQG_SUM_TID.

RPRODUCT
A record will be returned for each unique remote product.
The PCF value for this is MQG_SUM_RPRODUCT.

RVERSION
A record will be returned for each unique remote version.
The PCF value for this is MQG_SUM_RVERSION.

CONNID
A record will be returned for each unique connection identifier.
The PCF value for this is MQG_SUM_CONNECTION_ID.

STREAM
A record will be returned for each MQEV stream
The PCF value for this is MQG_SUM_STREAM.

TOTAL
Add together all of the records that match the other criteria (e.g. WHERE clause) on the display
command. If used without the INTVL attribute, this will result in only a single record being
returned. If used with the INTVL attribute, one record will be returned for each interval. The
various key fields reported on the returned record will reflect the fact that the numbers for many
applications might have been added together. Fields that represent multiple values will be shown
with an '*'.
This value cannot be combined with any others.
The PCF value for this is MQG_SUM_TOTAL.

COLLATE

Page 97

MQEV User Guide – Version 9.4.1

Controls whether the responses should be collated into time intervals. Collation can be useful to display
the 'pattern' of the records rather than just looking at the raw data. For more information about collation
please see Chapter:7 Collation described on page 44.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_COLLATE.

ZEROVALS
How to handle zero values in the records displayed.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_ZERO_VALUES.

Possible Values are:-

HIDE
Do not show any zero values. This is the default value.
The PCF value for this is MQG_ZEROVALS_HIDE.

SHOW
Show zero values in records.
The PCF value for this is MQG_ZEROVALS_SHOW.

TITLE
This is an optional wild-carded parameter, used when collation is active, which allows the user to select
which records should be returned from the command.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_TITLE. The
maximum length of this string is MQG_TITLE_LENGTH (20).

INTVL
When summing records, the reported records are totalled in intervals of the specified length. That is, if
you request an INTVL(4hour), reported intervals will be at midnight, 4am, 8am, noon and so on. This
parameter is only valid when you are not using SUM(NONE). The maximum length of this string is
MQG_DATE_TIME_LENGTH (30).

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_INTERVAL.

Many different parameter formats are supported to provide an interval. The following are supported:

Values Meaning

2day (or 2d) Two days

4hour (or 4hr or 4h) Four hours

3minute (or 3min or 3m) Three minutes

1d4h Values can be combined without spaces

INTVLSTA
This is an integer representation15 of the date and time of the start of the interval.

When using the PCF interface, this is an MQCFIN64 parameter with identifier
MQG_ATTR_START_OF_INTERVAL. This can be both and input and output parameter.

Either use INTVLSTA and INTVLEND, or use FROM and TO. You cannot use both. It is expected that users
will mainly use FROM and TO. INTVLSTA and INTVLEND are designed for programmable interfaces to
input values previously returned on earlier commands.

15 The number of seconds since 1st January 1970 – also known as Unix time or Epoch time.

Page 98

MQEV User Guide – Version 9.4.1

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

INTVLEND
This is an integer representation15 of the date and time of the end of the interval.

When using the PCF interface, this is an MQCFIN64 parameter with identifier
MQG_ATTR_END_OF_INTERVAL. This can be both and input and output parameter.

Please refer to the description of INTVLSTA for advice on when to use this parameter.

TO
The time up to when records should be returned. The maximum length of this string is
MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_TO.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Please see the description of the FROM parameter for the allowed values.

If not specified then the value 'now' will be used.

FROM
The time from which records should be returned. The maximum length of this string is
MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_FROM.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Many different parameter formats are supported, the time can be specified in either absolute or relative
terms.

If not specified then the value '-24hour' will be used.

Page 99

MQEV User Guide – Version 9.4.1

The following are supported:

Absolute values Meaning

now The current time

8 Eight AM

8.30 Eight thirty AM

8.31.46 or 8:31:46 Eight thirty-one and 46 seconds

04-12 12th April (this year)
The day and month fields must always be two digits

2018-10-18 18th October 2018
The year field must always be four digits

2018-10-18 8.31.46 or
2018-10-18 8:31:46

An explicit date and time

Relative values Relative to 'the other' time parameter
Note that both times can not be relative

-2day (or -2d) Two days before

+1d One day after

-4hour (or -4hr or -4h) Four hours before

-3minute (or -3min or -3m) Three minutes before

-10second (-10 sec or -10s or -10) Ten seconds before

-1d4h3m6s Values can be combined without spaces

TZ
The bias, in minutes, of the time zone that the FROM and TO parameters are specified in, and any provided
INTVL will also be aligned to this time zone.

When using the PCF interface, this is an MQCFIN parameter with identifier MQC_ATTR_TIMEZONE.

If not specified then the time zone will be assumed to be UTC.

Here are some examples:-

Time zone TZ Value

Auckland, New Zealand TZ(-720)

UTC TZ(0)

Portland, Oregon, USA TZ(480)

If you are using MO71 or MQSCX, you do not need to manually provide this attribute as those tools
automatically include it from known configuration in those tools.

MAXRECS
The number of source records which should be used to construct the response. This prevents inadvertent
consumption of CPU when issuing queries against large amounts of data.

The default value is taken from the EV object which itself has a default value of 1,000,000.

This value can not be larger than 100,000,000.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MAX_RECORDS.

Page 100

MQEV User Guide – Version 9.4.1

MAXRESP
The number of responses to be returned to this DISPLAY command. The default value is 100.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MAX_RESPONSES.

PREWHERE
Specify a filter condition to only total records that satisfy the selection criterion of the filter condition. For
more about the WHERE clause see Chapter 10 Where Clause() on page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_PREWHERE.

WHERE
Specify a filter condition to only display records that satisfy the selection criterion of the filter condition.
For more about the WHERE clause see Chapter 10 Where Clause() on page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_WHERE.

ACCTMQI Attributes
The attribute list can specify any of the following values. When using the PCF interface, this is an
MQCFIL parameter with identifier MQG_ATTR_EV_ACCT_MQI_ATTRS.

Those highlighted are constructed attributes for your convenience and are not stored in the accounting
message. For this reason they are not available in the MQEVAcctMQI function.

For a description of these fields please read the MQ documentation

MQSC Value PCF Constant PCF Type Description

ALL MQIACF_ALL N/A All attributes

CMDLEVEL MQIA_COMMAND_LEVEL MQCFIN IBM MQ Command Level

TITLE MQG_ATTR_TITLE MQCFST Collation Interval Title

TITLEIDX MQG_ATTR_TITLE_INDEX MQCFIN Index of Collation Interval Title.

AGGRINT MQG_ATTR_AGGR_INTERVAL MQCFIN Aggregation Interval active at collection time

CONNID MQBACF_CONNECTION_ID MQCFBS Connection Identifier

USERID MQCACF_USER_IDENTIFIER MQCFST User Identifier

CHANNEL MQCACH_CHANNEL_NAME MQCFST Channel Name

CONNAME MQCACH_CONNECTION_NAME MQCFST Connection Name

RPRODUCT MQCACH_REMOTE_PRODUCT MQCFST Remote Product

RVERSION MQCACH_REMOTE_VERSION MQCFST Remote Version

CONNDURN MQG_ACCST_CONNECTION_DURATION MQCFIN Duration of connection (in seconds)

CONNTI MQG_ACCST_CONN_TIME MQCFIN64 UTC Time when application connected 16

DISCTI MQG_ACCST_DISC_TIME MQCFIN64 UTC Time when application disconnected 16

PID MQIACF_PROCESS_ID MQCFIN Process ID

TID MQIACF_THREAD_ID MQCFIN Thread ID

SEQNUM MQIACF_SEQUENCE_NUMBER MQCFIN Sequence number of record

DISCTYPE MQIAMO_DISC_TYPE MQCFIN Disconnect Type (Normal | Implicit | QMgr)

OPENQ MQG_ACCST_OPEN_QUEUE MQCFIN Open Queue count

OPENNL MQG_ACCST_OPEN_NAMELIST MQCFIN Open Namelist count

16 The number of seconds since 1st January 1970 – also known as Unix time or Epoch time.

Page 101

https://www.ibm.com/docs/en/ibm-mq/latest?topic=reference-mqi-accounting-message-data

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

OPENPR MQG_ACCST_OPEN_PROCESS MQCFIN Open Process count

OPENQM MQG_ACCST_OPEN_Q_MGR MQCFIN Open QMgr count

OPENTP MQG_ACCST_OPEN_TOPIC MQCFIN Open Topic count

OPENQFL MQG_ACCST_OPEN_FAIL_QUEUE MQCFIN Open Queue fail count

OPENNLFL MQG_ACCST_OPEN_FAIL_NAMELIST MQCFIN Open Namelist fail count

OPENPRFL MQG_ACCST_OPEN_FAIL_PROCESS MQCFIN Open Process fail count

OPENQMFL MQG_ACCST_OPEN_FAIL_Q_MGR MQCFIN Open QMgr fail count

OPENTPFL MQG_ACCST_OPEN_FAIL_TOPIC MQCFIN Open Topic fail count

CLOSEQ MQG_ACCST_CLOSE_QUEUE MQCFIN Close Queue count

CLOSENL MQG_ACCST_CLOSE_NAMELIST MQCFIN Close Namelist count

CLOSEPR MQG_ACCST_CLOSE_PROCESS MQCFIN Close Process count

CLOSEQM MQG_ACCST_CLOSE_Q_MGR MQCFIN Close QMgr count

CLOSETP MQG_ACCST_CLOSE_TOPIC MQCFIN Close Topic count

CLOSEQFL MQG_ACCST_CLOSE_FAIL_QUEUE MQCFIN Close Queue fail count

CLOSENLFL MQG_ACCST_CLOSE_FAIL_NAMELIST MQCFIN Close Namelist fail count

CLOSEPRFL MQG_ACCST_CLOSE_FAIL_PROCESS MQCFIN Close Process fail count

CLOSEQMFL MQG_ACCST_CLOSE_FAIL_Q_MGR MQCFIN Close QMgr fail count

CLOSETPFL MQG_ACCST_CLOSE_FAIL_TOPIC MQCFIN Close Topic fail count

ALLPUT MQG_ACCST_ALL_PUTS MQCFIN All Puts
Constructed from sum of PUT and PUT1

PUT MQG_ACCST_PUTS MQCFIN Puts
Constructed from sum of PUTNP and PUTP

PUTNP MQG_ACCST_PUTS_NP MQCFIN Puts (Non-persistent)

PUTP MQG_ACCST_PUTS_P MQCFIN Puts (Persistent)

PUTBYTE MQG_ACCST_64_PUT_BYTES MQCFIN64 Put Bytes
Constructed from sum of PUTBYTENP and PUTBYTEP

PUTBYTENP MQG_ACCST_64_PUT_BYTES_NP MQCFIN64 Put Bytes (Non-persistent)

PUTBYTEP MQG_ACCST_64_PUT_BYTES_P MQCFIN64 Put Bytes(Persistent)

PUTFAIL MQG_ACCST_PUTS_FAILED MQCFIN Puts Failed

PUT1 MQG_ACCST_PUT1S MQCFIN Put1s
Constructed from sum of PUT1NP and PUT1P

PUT1NP MQG_ACCST_PUT1S_NP MQCFIN Put1s (Non-persistent)

PUT1P MQG_ACCST_PUT1S_P MQCFIN Put1s (Persistent)

PUT1FAIL MQG_ACCST_PUT1S_FAILED MQCFIN Put1s Failed

GET MQG_ACCST_GETS MQCFIN Gets
Constructed from sum of GETNP and GETP

GETNP MQG_ACCST_GETS_NP MQCFIN Gets (Non-persistent)

GETP MQG_ACCST_GETS_P MQCFIN Gets (Persistent)

GETFAIL MQG_ACCST_GETS_FAILED MQCFIN Gets Failed

GETBYTE MQG_ACCST_64_GET_BYTES MQCFIN64 Get Bytes
Constructed from sum of GETBYTENP and GETBYTEP

Page 102

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

GETBYTENP MQG_ACCST_64_GET_BYTES_NP MQCFIN64 Get Bytes (Non-persistent)

GETBYTEP MQG_ACCST_64_GET_BYTES_P MQCFIN64 Get Bytes(Persistent)

BRS MQG_ACCST_BROWSES MQCFIN Browses
Constructed from sum of BRSNP and BRSP

BRSNP MQG_ACCST_BROWSES_NP MQCFIN Browses (Non-persistent)

BRSP MQG_ACCST_BROWSES_P MQCFIN Browses (Persistent)

BRSFAIL MQG_ACCST_BROWSES_FAILED MQCFIN Browses Failed

BRSBYTE MQG_ACCST_64_BROWSE_BYTES MQCFIN64 Browses Bytes
Constructed from sum of BRSBYTENP and BRSBYTEP

BRSBYTENP MQG_ACCST_64_BROWSE_BYTES_NP MQCFIN64 Browses Bytes (Non-persistent)

BRSBYTEP MQG_ACCST_64_BROWSE_BYTES_P MQCFIN64 Browses Bytes(Persistent)

COMMIT MQG_ACCST_COMMIT MQCFIN Commit count

COMMITFL MQG_ACCST_COMMIT_FAIL MQCFIN Commit fail count

BACKOUT MQG_ACCST_BACKOUT MQCFIN Backout count

INQQ MQG_ACCST_INQ_QUEUE MQCFIN Inquire Queue count

INQNL MQG_ACCST_INQ_NAMELIST MQCFIN Inquire Namelist count

INQPR MQG_ACCST_INQ_PROCESS MQCFIN Inquire Process count

INQQM MQG_ACCST_INQ_Q_MGR MQCFIN Inquire QMgr count

INQQFL MQG_ACCST_INQ_FAIL_QUEUE MQCFIN Inquire Queue fail count

INQNLFL MQG_ACCST_INQ_FAIL_NAMELIST MQCFIN Inquire Namelist fail count

INQPRFL MQG_ACCST_INQ_FAIL_PROCESS MQCFIN Inquire Process fail count

INQQMFL MQG_ACCST_INQ_FAIL_Q_MGR MQCFIN Inquire QMgr fail count

SETQ MQG_ACCST_SET_QUEUE MQCFIN Set Queue count

SETQFL MQG_ACCST_SET_FAIL_QUEUE MQCFIN Set Queue fail count

SUBDURCR MQG_ACCST_SUB_DUR_CREATED MQCFIN Durable Sub created

SUBDURAL MQG_ACCST_SUB_DUR_ALTERED MQCFIN Durable Sub altered

SUBDURRS MQG_ACCST_SUB_DUR_RESUMED MQCFIN Durable Sub resumed

SUBNDURCR MQG_ACCST_SUB_NONDUR_CREATED MQCFIN Non-durable Sub created

SUBNDURAL MQG_ACCST_SUB_NONDUR_ALTERED MQCFIN Non-durable Sub altered

SUBNDURRS MQG_ACCST_SUB_NONDUR_RESUMED MQCFIN Non-durable Sub resumed

SUBFL MQG_ACCST_SUB_FAIL MQCFIN Sub fail count

UNSUBCLS MQG_ACCST_UNSUB_DUR_CLOSED MQCFIN Un-sub close count

UNSUBREM MQG_ACCST_UNSUB_DUR_REMOVED MQCFIN Un-sub removed count

UNSUBNCLS MQG_ACCST_UNSUB_NONDUR_CLOSED MQCFIN Un-sub non-durable close count

UNSUBNREM MQG_ACCST_UNSUB_NONDUR_REMOVED MQCFIN Un-sub non-durable removed count

UNSUBFL MQG_ACCST_UNSUB_FAIL MQCFIN Un-sub fail count

SUBRQ MQG_ACCST_SUBRQ MQCFIN SubRq count

SUBRQFL MQG_ACCST_SUBRQ_FAIL MQCFIN SubRq fail count

Page 103

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

CBS MQG_ACCST_CBS MQCFIN MQCB calls
Constructed from sum of CBCREATE, CBREMOVE,
CBRESUME and CBSUSPEND.

CBCREATE MQG_ACCST_CBS_CREATED MQCFIN MQCB calls using MQOP_REGISTER

CBREMOVE MQG_ACCST_CBS_REMOVED MQCFIN MQCB calls using MQOP_DEREGISTER

CBRESUME MQG_ACCST_CBS_RESUMED MQCFIN MQCB calls using MQOP_RESUME

CBSUSPEND MQG_ACCST_CBS_SUSPENDED MQCFIN MQCB calls using MQOP_SUSPEND

CBSFAIL MQG_ACCST_CBS_FAILED MQCFIN MQCB calls failed

CTLSTA MQG_ACCST_CTL_STARTED MQCFIN MQCTL calls using MQOP_START*

CTLSTP MQG_ACCST_CTL_STOPPED MQCFIN MQCTL calls using MQOP_STOP

CTLRES MQG_ACCST_CTL_RESUMED MQCFIN MQCTL calls using MQOP_RESUME

CTLSUS MQG_ACCST_CTL_SUSPENDED MQCFIN MQCTL calls using MQOP_SUSPEND

CTLFL MQG_ACCST_CTL_FAIL MQCFIN MQCTL calls failed

STAT MQG_ACCST_STAT MQCFIN MQSTAT call count

STATFL MQG_ACCST_STAT_FAIL MQCFIN MQSTAT call fail count

PUTTOP MQG_ACCST_PUT_TOPIC MQCFIN Puts to Topic
Constructed from sum of PUTTOPNP and PUTTOPP

PUTTOPNP MQG_ACCST_PUT_TOPIC_NP MQCFIN Puts to Topic (Non-persistent)

PUTTOPP MQG_ACCST_PUT_TOPIC_P MQCFIN Puts to Topic (Persistent)

PUTTOPFL MQG_ACCST_PUT_TOPIC_FAILED MQCFIN Puts to Topic Failed

PUT1TOP MQG_ACCST_PUT1_TOPIC MQCFIN Put1s to Topic
Constructed from sum of PUT1TOPNP and PUT1TOPP

PUT1TOPNP MQG_ACCST_PUT1_TOPIC_NP MQCFIN Put1s to Topic (Non-persistent)

PUT1TOPP MQG_ACCST_PUT1_TOPIC_P MQCFIN Put1s to Topic (Persistent)

PUT1TOPFL MQG_ACCST_PUT1_TOPIC_FAILED MQCFIN Put1s to Topic Failed

PUTTOPBYTE MQG_ACCST_PUT_TOPIC_BYTES MQCFIN64 Put to Topic Bytes
Constructed from sum of PUTTOPBYTENP and
PUTTOPBYTEP

PUTTOPBYTENP MQG_ACCST_PUT_TOPIC_BYTES_NP MQCFIN64 Put to Topic Bytes (Non-persistent)

PUTTOPBYTEP MQG_ACCST_PUT_TOPIC_BYTES_P MQCFIN64 Put to Topic Bytes(Persistent)

CONNS MQG_ACCST_CONNECTIONS MQCFIN Count of connections

RECORDS MQG_ATTR_RECORDS MQCFIN Number of records totalled together

INTVLSTA MQG_ATTR_START_OF_INTERVAL MQCFIN64 UTC Interval Start time 17

INTVLEND MQG_ATTR_END_OF_INTERVAL MQCFIN64 UTC Interval End time 17

17 The number of seconds since 1st January 1970 – also known as Unix time or Epoch time.

Page 104

MQEV User Guide – Version 9.4.1

13.14 DISPLAY ACCTQ
Use the MQSC command DISPLAY ACCTQ (or it's equivalent PCF command MQG_CMD_DISPLAY_ACCT_Q) to
display the Queue accounting records processed and stored by MQEV. For a description of the accounting fields
provided by MQ please read the MQ documentation

13.14.1 Syntax diagram for DISPLAY ACCTQ

►►─ DISPLAY ACCTQ(wildcarded-queue-name) ──┬───────────────────────┬───────────────►
 └─ EVQMGR(qmgr-name) ─┘

 ┌─ GAPFILL(NO) ───────────────┐ ┌─ SUM(QUEUE) ─────────────┐
►───┼───────────────────────────────┼────┼────────────────────────────┼────────────────►
 └─ GAPFILL(─┬─ INNER ────┬─) ─┘ ├─ SUM(─┬─ NONE ─────┬──) ─┤
 ├─ ACTIVITY ─┤ │ └─ TOTAL ────┘ │
 └─ FULL ─────┘ │ ┌─,────────────┐ │
 │ ↓ │ │
 └─ SUM(─┬─ QUEUE ────┬┴─) ─┘
 ├─ PREFIX ───┤
 ├─ PREFIX2 ──┤
 ├─ SUFFIX ───┤
 ├─ APPL ─────┤
 ├─ CHANNEL───┤
 ├─ CONNAME ──┤
 ├─ USERID ───┤
 ├─ PID ──────┤
 ├─ TID ──────┤
 ├─ STREAM ───┤
 └─ CONNID ───┘

 ┌─ FROM('-24h') ────────┐ ┌─ TO('now') ─────────┐ ┌─ TZ(0) ───────┐
►───┼─────────────────────────┼──┼───────────────────────┼──┼─────────────────┼────────►
 └─ FROM(date-and-time) ─┘ └─ TO(date-and-time) ─┘ └─ TZ(integer) ─┘

 ┌─ COLLATE(NONE) ──────┐ ┌─ ZEROVALS(HIDE) ─┐
►───┼────────────────────────┼───┼────────────────────┼───┬────────────────────┬───────►
 └─ COLLATE(collation) ─┘ └─ ZEROVALS(SHOW) ─┘ └── TITLE(title) ──┘

 ┌─ INTVLALGN(CLOCK) ─┐
►───┼──────────────────────┼──┬────────────────────────┬───────────────────────────────►
 └─ INTVLALGN(MQ) ────┘ └─ INTVL(time-period) ─┘

►───┬─────────────────────────────────────┬──┬─────────────────────────────────────┬───►
 └─ INTVLSTA(date-and-time-seconds) ─┘ └─ INTVLEND(date-and-time-seconds) ─┘

►───┬────────────────────────────┬───┬───────────────────────────────┬─────────────────►
 └─ WHERE(FilterCondition) ─┘ └─ PREWHERE(FilterCondition) ─┘

 ┌─ MAXRECS(ev-value) ─┐ ┌─ MAXRESP(100) ─────┐
►───┼───────────────────────┼─┼──────────────────────┼──┬────────────────┬──┬───────┬──►◄
 └─ MAXRECS(integer) ─┘ └─ MAXRESP(integer) ─┘ └─┤ attributes ├─┘ └─ ALL ─┘

Page 105

https://www.ibm.com/docs/en/ibm-mq/latest?topic=reference-queue-accounting-message-data

MQEV User Guide – Version 9.4.1

13.14.2 Parameter descriptions for DISPLAY ACCTQ

(wildcarded-queue-name)
The queue name for which accounting records are to be displayed. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier MQCA_Q_NAME.

EVQMGR
The queue manager associated with the records to be displayed.

This parameter is used to specify which queue manager you wish to see data from. If it is not specified,
the output shows records from the queue manager you are connected to.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_Q_MGR_NAME.

GAPFILL
Whether to add zeroed records where none exist to produce a set of records that will graph appropriately.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_GAP_FILL.

Possible Values are:-

NO
Do not fill in the gaps with zeroed records.
The PCF value for this is MQG_GAPFILL_NO.

INNER
Produce zeroed records for inner gaps in the set of records.
The PCF value for this is MQG_GAPFILL_INNER.

ACTIVITY
Add zeroed records to produce a set of records that spans the time period where there is any
activity on this queue, not just the activity shown by the attributes displayed.
The PCF value for this is MQG_GAPFILL_ACTIVITY.

FULL
Add zeroed records to produce a set of records that spans the entire time period requested.
The PCF value for this is MQG_GAPFILL_FULL

SUM
Whether the records are summed together, and if so how they are totalled. Multiple values can be
provided in a comma-separated list, except where indicated that a value cannot be combined with any
others.

When multiple values are provided, a record will be returned for each unique combination, e.g.
SUM(QUEUE, APPL) will return one record for each unique combination of queue name and application
name.

When using the PCF interface, this can be an MQCFIN parameter (should you only need to supply one
value) or an MQCFIL parameter (should you need to supply multiple values) with identifier
MQG_ATTR_SUM.

When any of the SUM values apart from NONE and TOTAL are used without the INTVL attribute, this will
result in a single record per unique key combination being returned. If used with the INTVL attribute, one
record per application will be returned for each interval.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Possible Values are:-

Page 106

MQEV User Guide – Version 9.4.1

NONE
Do not add together any records. The command returns each individual record as reported by IBM
MQ. This value cannot be combined with any others.
The PCF value for this is MQG_SUM_NONE.

APPL
A record will be returned for each unique application name.
The PCF value for this is MQG_SUM_APPLICATION_NAME.

CHANNEL
A record will be returned for each unique channel name.
The PCF value for this is MQG_SUM_CHANNEL_NAME.

CONNAME
A record will be returned for each unique connection name.
The PCF value for this is MQG_SUM_CONNECTION_NAME.

QUEUE18

A record will be returned for each unique queue name.
The PCF value for this is MQG_SUM_QUEUE.

PREFIX18

A record will be returned for each unique first portion of the queue name.
For example queues A.TST and A.PRD will be summed together
The PCF value for this is MQG_SUM_PREFIX.

PREFIX218

A record will be returned for each unique second portion of queue name.
For example queues A.MQGEM.TST and A.MQGEM.PRD will be summed together
The PCF value for this is MQG_SUM_PREFIX2.

SUFFIX18

A record will be returned for each unique last portion of queue name.
For example queues A.TST and B.TXT will be summed together
The PCF value for this is MQG_SUM_SUFFIX.

USERID
A record will be returned for each unique user identifier.
The PCF value for this is MQG_SUM_USER_ID.

PID
A record will be returned for each unique process identifier.
The PCF value for this is MQG_SUM_PID.

TID
A record will be returned for each unique thread identifier.
The PCF value for this is MQG_SUM_TID.

CONNID
A record will be returned for each unique connection identifier.
The PCF value for this is MQG_SUM_CONNECTION_ID.

STREAM
A record will be returned for each MQEV stream
The PCF value for this is MQG_SUM_STREAM.

18 Note that at most one of QUEUE, PREFIX, PREFIX2 and SUFFIX can be specified

Page 107

MQEV User Guide – Version 9.4.1

TOTAL
Add together all of the records that match the other criteria (e.g. WHERE clause) on the display
command. If used without the INTVL attribute, this will result in only a single record being
returned. If used with the INTVL attribute, one record will be returned for each interval. The
various key fields reported on the returned record will reflect the fact that the numbers for many
applications might have been added together. Fields that represent multiple values will be shown
with an '*'.
This value cannot be combined with any others.
The PCF value for this is MQG_SUM_TOTAL.

COLLATE
Controls whether the responses should be collated into time intervals. Collation can be useful to display
the 'pattern' of the records rather than just looking at the raw data. For more information about collation
please see Chapter:7 Collation described on page 44.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_COLLATE.

ZEROVALS
How to handle zero values in the records displayed.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_ZERO_VALUES.

Possible Values are:-

HIDE
Do not show any zero values. This is the default value.
The PCF value for this is MQG_ZEROVALS_HIDE.

SHOW
Show zero values in records.
The PCF value for this is MQG_ZEROVALS_SHOW.

TITLE
This is an optional wild-carded parameter, used when collation is active, which allows the user to select
which records should be returned from the command.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_TITLE. The
maximum length of this string is MQG_TITLE_LENGTH (20).

INTVL
When summing records, the reported records are totalled in intervals of the specified length. That is, if
you request an INTVL(4hour), reported intervals will be at midnight, 4am, 8am, noon and so on. This
parameter is only valid when you are not using SUM(NONE). The maximum length of this string is
MQG_DATE_TIME_LENGTH (30).

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_INTERVAL.

Many different parameter formats are supported to provide an interval. The following are supported:

Values Meaning

2day (or 2d) Two days

4hour (or 4hr or 4h) Four hours

3minute (or 3min or 3m) Three minutes

Page 108

MQEV User Guide – Version 9.4.1

1d4h Values can be combined without spaces

INTVLALGN
How to align the reported intervals of records. This parameter is only used when an INTVL is set.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_INTERVAL_ALIGN.

CLOCK
Reported intervals are aligned to the clock. That is, if you request an INTVL(4hour), reported
intervals will be at midnight, 4am, 8am, noon and so on. This is the default value.
The PCF value for this is MQG_ALIGN_CLOCK.

MQ
Reported intervals are aligned to the intervals reported by IBM MQ.
The PCF value for this is MQG_ALIGN_MQ.

TO
The time up to when records should be returned. The maximum length of this string is
MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_TO.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61. Please see the description of the FROM parameter for the
allowed values. If not specified then the value 'now' will be used.

FROM
The time from which records should be returned. The maximum length of this string is
MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_FROM.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Many different parameter formats are supported, the time can be specified in either absolute or relative
terms.

If not specified then the value '-24hour' will be used.

The following are supported:

Absolute values Meaning

now The current time

8 Eight AM

8.30 Eight thirty AM

8.31.46 or 8:31:46 Eight thirty-one and 46 seconds

04-12 12th April (this year)
The day and month fields must always be two digits

2018-10-18 18th October 2018
The year field must always be four digits

2018-10-18 8.31.46 or
2018-10-18 8:31:46

An explicit date and time

Relative values Relative to 'the other' time parameter
Note that both times can not be relative

-2day (or -2d) Two days before

Page 109

MQEV User Guide – Version 9.4.1

+1d One day after

-4hour (or -4hr or -4h) Four hours before

-3minute (or -3min or -3m) Three minutes before

-10second (-10 sec or -10s or -10) Ten seconds before

-1d4h3m6s Values can be combined without spaces

TZ
The bias, in minutes, of the time zone that the FROM and TO parameters are specified in, and any provided
INTVL will also be aligned to this time zone.

When using the PCF interface, this is an MQCFIN parameter with identifier MQC_ATTR_TIMEZONE.

If not specified then the time zone will be assumed to be UTC.

Here are some examples:-

Time zone TZ Value

Auckland, New Zealand TZ(-720)

UTC TZ(0)

Portland, Oregon, USA TZ(480)

If you are using MO71 or MQSCX, you do not need to manually provide this attribute as those tools
automatically include it from known configuration in those tools.

INTVLSTA
This is an integer representation19 of the date and time of the start of the interval.

When using the PCF interface, this is an MQCFIN64 parameter with identifier
MQG_ATTR_START_OF_INTERVAL. This can be both and input and output parameter.

Either use INTVLSTA and INTVLEND, or use FROM and TO. You cannot use both. It is expected that users
will mainly use FROM and TO. INTVLSTA and INTVLEND are designed for programmable interfaces to
input values previously returned on earlier commands..

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

INTVLEND
This is an integer representation20 of the date and time of the end of the interval.

When using the PCF interface, this is an MQCFIN64 parameter with identifier
MQG_ATTR_END_OF_INTERVAL. This can be both and input and output parameter.

Please refer to the description of INTVLSTA for advice on when to use this parameter.

MAXRECS
The number of source records which should be used to construct the response. This prevents inadvertent
consumption of CPU when issuing queries against large amounts of data.

The default value is taken from the EV object which itself has a default value of 1,000,000.

This value can not be larger than 100,000,000.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MAX_RECORDS.

19 The number of seconds since 1st January 1970 – also known as Unix time or Epoch time.
20 The number of seconds since 1st January 1970 – also known as Unix time or Epoch time.

Page 110

MQEV User Guide – Version 9.4.1

MAXRESP
The number of responses to be returned to this DISPLAY command. The default value is 100.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MAX_RESPONSES.

PREWHERE
Specify a filter condition to only total records that satisfy the selection criterion of the filter condition. For
more about the WHERE clause see Chapter 10 Where Clause() on page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_PREWHERE.

WHERE
Specify a filter condition to only display records that satisfy the selection criterion of the filter condition.
For more about the WHERE clause see Chapter 10 Where Clause() on page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_WHERE.

ACCTQ Attributes
The attribute list can specify any of the following values. When using the PCF interface, this is an
MQCFIL parameter with identifier MQG_ATTR_EV_ACCT_Q_ATTRS.

Those highlighted are constructed attributes for your convenience and are not stored in the accounting
message. For this reason they are not available in the MQEVAcctQ function.

The CHANNEL and CONNAME fields in an ACCTQ record will contain the value “<Not Present>” for
records generated by a queue manager older than V9.2.0 and V9.3.0 respectively. This is done to
differentiate between a record about a local connection which would have blanks in those fields, and a
record from a queue manager too old to provide the details, which might or might not be a client
connection.

For a description of these fields please read the MQ documentation

MQSC Value PCF Constant PCF Type Description

ALL MQIACF_ALL N/A All attributes

ACCTQ MQCA_Q_NAME MQCFST Queue Name

APPLNAME MQCACF_APPL_NAME MQCFST Application Name

CHANNEL MQCACH_CHANNEL_NAME MQCFST Channel Name

CONNAME MQCACH_CONNECTION_NAME MQCFST Connection Name

CMDLEVEL MQIA_COMMAND_LEVEL MQCFIN IBM MQ Command Level

TTILE MQG_ATTR_TITLE MCFST Collation Interval Title

TTILEIDX MQG_ATTR_TITLE_INDEX MQCFIN Index of Collation Interval Title

AGGRINT MQG_ATTR_AGGR_INTERVAL MQCFIN Aggregation Interval active at collection time

CONNID MQBACF_CONNECTION_ID MQCFBS Connection Identifier

USERID MQCACF_USER_IDENTIFIER MQCFST User Identifier

PID MQIACF_PROCESS_ID MQCFIN Process ID

TID MQIACF_THREAD_ID MQCFIN Thread ID

SEQNUM MQIACF_SEQUENCE_NUMBER MQCFIN Sequence number of record

Page 111

https://www.ibm.com/docs/en/ibm-mq/latest?topic=reference-queue-accounting-message-data

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

QTYPE MQIA_Q_TYPE MQCFIN Queue Type

DEFTYPE MQIA_DEFINITION_TYPE MQCFIN Queue Definition Type

OPENCNT MQG_ACCST_OPEN_COUNT MQCFIN Count of queues opened in this interval

OPENTI MQG_ACCST_OPEN_TIME MQCFIN64 UTC time the queue was first opened

CLOSECNT MQG_ACCST_CLOSE_COUNT MQCFIN Count of queues closed in this interval

CLOSETI MQG_ACCST_CLOSE_TIME MQCFIN64 UTC time of the final close of this queue in this interval

ALLPUT MQG_ACCST_ALL_PUTS MQCFIN All Puts
Constructed from sum of PUT and PUT1

PUT MQG_ACCST_PUTS MQCFIN Puts
Constructed from sum of PUTNP and PUTP

PUTNP MQG_ACCST_PUTS_NP MQCFIN Puts (Non-persistent)

PUTP MQG_ACCST_PUTS_P MQCFIN Puts (Persistent)

PUTFAIL MQG_ACCST_PUTS_FAILED MQCFIN Puts Failed

PUT1 MQG_ACCST_PUT1S MQCFIN Put1s
Constructed from sum of PUT1NP and PUT1P

PUT1NP MQG_ACCST_PUT1S_NP MQCFIN Put1s (Non-persistent)

PUT1P MQG_ACCST_PUT1S_P MQCFIN Put1s (Persistent)

PUT1FAIL MQG_ACCST_PUT1S_FAILED MQCFIN Put1s Failed

PUTBYTE MQG_ACCST_64_PUT_BYTES MQCFIN64 Put Bytes
Constructed from sum of PUTBYTENP and PUTBYTEP

PUTBYTENP MQG_ACCST_64_PUT_BYTES_NP MQCFIN64 Put Bytes (Non-persistent)

PUTBYTEP MQG_ACCST_64_PUT_BYTES_P MQCFIN64 Put Bytes(Persistent)

PUTMINBYTE MQG_ACCST_PUT_MIN_BYTES MQCFIN Minimum size of message put

Constructed from minimum of PUTMINBYTENP and
PUTMINBYTEP

PUTMINBYTENP MQG_ACCST_PUT_MIN_BYTES_NP MQCFIN Minimum size of non persistent message put

PUTMINBYTEP MQG_ACCST_PUT_MIN_BYTES_P MQCFIN Minimum size of persistent message put

PUTMAXBYTE MQG_ACCST_PUT_MAX_BYTES MQCFIN Maximum size of message put

Constructed from maximum of PUTMAXBYTENP and
PUTMAXBYTEP

PUTMAXBYTENP MQG_ACCST_PUT_MAX_BYTES_NP MQCFIN Maximum size of non-persistent message put

PUTMAXBYTEP MQG_ACCST_PUT_MAX_BYTES_P MQCFIN Maximum size of persistent message put

GENMSGCNT MQG_ACCST_GENERATED_MSG_COUNT MQCFIN Number of generated message in the interval

GET MQG_ACCST_GETS MQCFIN Gets
Constructed from sum of GETNP and GETP

GETNP MQG_ACCST_GETS_NP MQCFIN Gets (Non-persistent)

GETP MQG_ACCST_GETS_P MQCFIN Gets (Persistent)

Page 112

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

GETFAIL MQG_ACCST_GETS_FAILED MQCFIN Gets Failed

GETBYTE MQG_ACCST_64_GET_BYTES MQCFIN64 Get Bytes
Constructed from sum of GETBYTENP and GETBYTEP

GETBYTENP MQG_ACCST_64_GET_BYTES_NP MQCFIN64 Get Bytes (Non-persistent)

GETBYTEP MQG_ACCST_64_GET_BYTES_P MQCFIN64 Get Bytes(Persistent)

GETMINBYTE MQG_ACCST_GET_MIN_BYTES MQCFIN Minimum size of message got

Constructed from minimum of GETMINBYTENP and
GETMINBYTEP

GETMINBYTENP MQG_ACCST_GET_MIN_BYTES_NP MQCFIN Minimum size of non persistent message got

GETMINBYTEP MQG_ACCST_GET_MIN_BYTES_P MQCFIN Minimum size of persistent message got

GETMAXBYTE MQG_ACCST_GET_MAX_BYTES MQCFIN Maximum size of message got

Constructed from maximum of GETMAXBYTENP and
GETMAXBYTEP

GETMAXBYTENP MQG_ACCST_GET_MAX_BYTES_NP MQCFIN Maximum size of non-persistent message got

GETMAXBYTEP MQG_ACCST_GET_MAX_BYTES_P MQCFIN Maximum size of persistent message got

BRS MQG_ACCST_BROWSES MQCFIN Browses
Constructed from sum of BRSNP and BRSP

BRSNP MQG_ACCST_BROWSES_NP MQCFIN Browses (Non-persistent)

BRSP MQG_ACCST_BROWSES_P MQCFIN Browses (Persistent)

BRSFAIL MQG_ACCST_BROWSES_FAILED MQCFIN Browses Failed

BRSBYTE MQG_ACCST_64_BROWSE_BYTES MQCFIN64 Browses Bytes
Constructed from sum of BRSBYTENP and BRSBYTEP

BRSBYTENP MQG_ACCST_64_BROWSE_BYTES_NP MQCFIN64 Browses Bytes (Non-persistent)

BRSBYTEP MQG_ACCST_64_BROWSE_BYTES_P MQCFIN64 Browses Bytes(Persistent)

BRSMINBYTE MQG_ACCST_BRS_MIN_BYTES MQCFIN Minimum size of message browsed

Constructed from minimum of BRSMINBYTENP and
BRSMINBYTEP

BRSMINBYTENP MQG_ACCST_BRS_MIN_BYTES_NP MQCFIN Minimum size of non persistent message browsed

BRSMINBYTEP MQG_ACCST_BRS_MIN_BYTES_P MQCFIN Minimum size of persistent message browsed

BRSMAXBYTE MQG_ACCST_BRS_MAX_BYTES MQCFIN Maximum size of message browsed

Constructed from maximum of BRSMAXBYTENP and
BRSMAXBYTEP

BRSMAXBYTENP MQG_ACCST_BRS_MAX_BYTES_NP MQCFIN Maximum size of non-persistent message browsed

BRSMAXBYTEP MQG_ACCST_BRS_MAX_BYTES_P MQCFIN Maximum size of persistent message browsed

CBS MQG_ACCST_CBS MQCFIN MQCB calls
Constructed from the sum of CBCREATE, CBREMOVE,
CBSUSPEND and CBRESUME

CBCREATE MQG_ACCST_CBS_CREATED MQCFIN MQCB calls using MQOP_REGISTER

CBREMOVE MQG_ACCST_CBS_REMOVED MQCFIN MQCB calls using MQOP_DEREGISTER

Page 113

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

CBRESUME MQG_ACCST_CBS_RESUMED MQCFIN MQCB calls using MQOP_RESUME

CBSUSPEND MQG_ACCST_CBS_SUSPENDED MQCFIN MQCB calls using MQOP_SUSPEND

CBFAIL MQG_ACCST_CBS_FAILED MQCFIN MQCB calls failed

ONQMINNPTI MQG_ACCST_64_TIME_ON_Q_MIN_NP MQCFIN64 Shortest time (in micro-seconds) a non-persistent
message remained on the queue

ONQMINPTI MQG_ACCST_64_TIME_ON_Q_MIN_P MQCFIN64 Shortest time (in micro-seconds) a persistent message
remained on the queue

ONQMAXNPTI MQG_ACCST_64_TIME_ON_Q_MAX_NP MQCFIN64 Longest time (in micro-seconds) a non-persistent
message remained on the queue

ONQMAXPTI MQG_ACCST_64_TIME_ON_Q_MAX_P MQCFIN64 Longest time (in micro-seconds) a persistent message
remained on the queue

ONQAVGNPTI MQG_ACCST_64_TIME_ON_Q_AVG_NP MQCFIN64 Average time (in micro-seconds) a non-persistent
message remained on the queue

ONQAVGPTI MQG_ACCST_64_TIME_ON_Q_AVG_P MQCFIN64 Average time (in micro-seconds) a persistent message
remained on the queue

RECORDS MQG_ATTR_RECORDS MQCFIN Number of records totalled together

Page 114

MQEV User Guide – Version 9.4.1

13.15 DISPLAY EV
Use the MQSC command DISPLAY EV (or it's equivalent PCF command MQG_CMD_DISPLAY_EV) to display the
main overall configuration and status of the MQEV event processor.

13.15.1 Syntax diagram for DISPLAY EV

►►─ DISPLAY EV ─┬──────────────┬────┬──────────────┬───┬─────────┬────────►◄
 ├── ACCTMQICT ─┤ ├── LICREMIND ─┤ └── ALL ──┘
 ├── ACCTQCT ───┤ ├── LOGPATH ───┤
 ├── ALERTCT ───┤ ├── LOGRET ────┤
 ├── ALERTRET ──┤ ├── MAXLOGAGE ─┤
 ├── BUILD ─────┤ ├── MAXLOGSZ ──┤
 ├── CMDLEVEL ──┤ ├── MSGS ──────┤
 ├── CMDS ──────┤ ├── NAME ──────┤
 ├── CONNTI ────┤ ├── RESETTI ───┤
 ├── DEFMAXRECS─┤ ├── STARTTI ───┤
 ├── DEADQ ─────┤ ├── STATCHLCT ─┤
 ├── DESCR ─────┤ ├── STATMQICT ─┤
 ├── DISPCMDS ──┤ ├── STATQCT ───┤
 ├── EVENTCT ───┤ ├── STORMINT ──┤
 ├── EVENTS ────┤ ├── STORMTHR ──┤
 ├── LICDAYS ───┤ ├── USEDLQ ────┤
 └── LICENDDA ──┘ └── VERCHECK ──┘

13.15.2 Parameter descriptions for DISPLAY EV

EV Attributes
The attribute list can specify any of the following values. When using the PCF interface, this is an
MQCFIL parameter with identifier MQG_ATTR_EV_ATTRS.

MQSC Value PCF Constant PCF Type Description

ALL MQIACF_ALL N/A All attributes

ACCTMQICT MQG_ATTR_ACCT_MQI_COUNT MQCFIN The total number of MQI Accounting records processed
and stored by MQEV since last RESET.

ACCTQCT MQG_ATTR_ACCT_Q_COUNT MQCFIN The total number of Queue Accounting records
processed and stored by MQEV since last RESET.

ALERTCT MQG_ATTR_ALERT_COUNT MQCFIN The number of alerts in the system in total. This is the
total of all DISPLAY EVQMGR ALERTS

ALERTRET MQG_ATTR_DEF_ALERT_
RETENTION_INTERVAL

MQCFIN The retention interval, in days, for alerts.

BUILD MQG_ATTR_BUILD MQCFST The build date of this version of MQEV.

CMDLEVEL MQG_ATTR_COMMAND_LEVEL MQCFIN The command level of the MQEV command server. For
Version 9.3.0 this has the value 930.

CMDS MQG_ATTR_NUM_COMMANDS MQCFIN The number of commands processed by the MQEV
command server since this instance of MQEV started up

CONNTI MQG_ATTR_EV_CONNECT_TIME MQCFIN64 The date and time, in local time, this instance of MQEV
last connected to the queue manager. 21

21 The number of seconds since 1st January 1970 – also known as Unix time or Epoch time.

Page 115

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

DEADQ MQG_ATTR_DEAD_LETTER_QUEUE MQCFST The name of the dead-letter queue to use. If this is blank,
the queue manager defined DEADQ is used.

DEFMAXRECS MQG_ATTR_DEFAULT_MAX_RECORDS MQCFIN The default number of source records which will be used
to satisfy a DISPLAY command of the Accounting or
Statistics data.

DESCR MQG_ATTR_EV_DESC MQCFST A text description of this MQEV instance.

DISPCMDS MQG_ATTR_DISPLAY_COMMANDS MQCFIN How to handle command events received that record
DISPLAY commands.

EVENTCT MQG_ATTR_EVENT_COUNT MQCFIN The total number of events processed and stored by
MQEV since last RESET. This count will not include
discarded command events.

EVENTS MQG_ATTR_NUM_EVENTS MQCFIN The number of event messages processed since this
instance of MQEV started up. This number will include
Command events that describe DISPLAY commands
even if they have been discarded due to the DISPCMDS
setting.

LICDAYS MQG_ATTR_LICENCE_TIME_LEFT MQCFIN The time left, in days, on your MQEV licence.

LICENDDA MQG_ATTR_LICENCE_END_DATE MQCFIN64 The date when your MQEV licence expires. 22

LICREMIND MQG_ATTR_LICENCE_REMIND_TIME MQCFIN The time left on your MQEV licence, in days, after
which you will begin to get reminders.

LOGPATH MQG_ATTR_LOG_PATH MQCFST The location of the MQEV log files.
For more information on how to set the location of
MQEV log file see Chapter 9 Logging on page 54.

LOGRET MQG_ATTR_LOG_RETENTION_
INTERVAL

MQCFIN The retention interval, in days, for MQEV log files.

MAXLOGAGE MQG_ATTR_MAX_LOG_AGE MQCFIN The maximum age, in minutes, of an MQEV log file.

MAXLOGSZ MQG_ATTR_MAX_LOG_SIZE MQCFIN The maximum size, in kilobytes, of an MQEV log file.

MSGS MQG_ATTR_NUM_MESSAGES MQCFIN The number of all messages (both commands and
events) processed since this instance of MQEV started
up.

NAME MQG_ATTR_EV_NAME MQCFST The name of this MQEV instance.

RESETTI MQG_ATTR_COUNT_RESET_TIME MQCFIN64 The date and time, in local time, when the event counts
were last reset. If they have never been reset, this will
show the time when MQEV was first started. 22

STARTTI MQG_ATTR_EV_START_TIME MQCFIN64 The date and time, in local time, this instance of MQEV
started up. 22

STATCHLCT MQG_ATTR_STAT_CHL_COUNT MQCFIN The total number of Channel Statistics records processed
and stored by MQEV since last RESET.

STATMQICT MQG_ATTR_STAT_MQI_COUNT MQCFIN The total number of MQI Statistics records processed
and stored by MQEV since last RESET.

STATQCT MQG_ATTR_STAT_Q_COUNT MQCFIN The total number of Queue Statistics records processed
and stored by MQEV since last RESET.

STORMINT MQG_ATTR_STORM_INTERVAL MQCFIN The time period, in seconds, within which a number of
identical events are received (configured by STORMTHR)
before it is considered to be an event storm.

22 The number of seconds since 1st January 1970 – also known as Unix time or Epoch time.

Page 116

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

STORMTHR MQG_ATTR_STORM_THRESHOLD MQCFIN The number of identical events received in a time period
(configured by STORMINT) before it is considered to be
an event storm.

VERCHECK MQG_ATTR_VERSION_CHECK MQCFIN Whether to check for newer versions of the product.

USEDLQ MQG_ATTR_USE_DEAD_LETTER_Q MQCFIN Whether the Dead-letter queue is used.

Page 117

MQEV User Guide – Version 9.4.1

13.16 DISPLAY EVALERT
Use the MQSC command DISPLAY EVALERT (or it's equivalent PCF command MQG_CMD_DISPLAY_EV_ALERT)
to display the attributes of an alert. Alerts can be used as reminders or notifications. Learn more about alerts in
Chapter 14 Alerts on page 172.

13.16.1 Syntax diagram for DISPLAY EVALERT

►►─ DISPLAY EVALERT─┬────────────────┬──┬─────────────────────────────────┬───►
 └─ (alert-id) ─┘ └─ CATEGORY(wildcarded-string) ─┘

►──┬───────────────────────────────┬──┬─────────────────────────────────┬─────►
 └─ EVQMGR(wildcarded-string) ─┘ └─ EVOBJNAME(wildcarded-string)─┘

 ┌──MINSEV(WARN) ────────────┐
►──┼─────────────────────────────┼──┬────────────────────────────────┬─────►
 └─ MINSEV(─┬─ TERM ────┬─) ─┘ └── EVOBJTYPE(─┬─ AUTHINFO ─┬─) ─┘
 ├─ SEVERE ──┤ ├─ AUTHREC ──┤
 ├─ ERROR ───┤ ├─ CFSTRUCT ─┤
 └─ INFO ────┘ ├─ CHANNEL ──┤
 ├─ CHLAUTH ──┤
 ├─ CLNTCONN ─┤
 ├─ COMMINFO ─┤
 ├─ EVQ ──────┤
 ├─ LISTENER ─┤
 ├─ NAMELIST ─┤
 ├─ POLICY ───┤
 ├─ PROCESS ──┤
 ├─ QUEUE ────┤
 ├─ QMGR ─────┤
 ├─ RQMNAME ──┤
 ├─ SERVICE ──┤
 ├─ SUB ──────┤
 ├─ STGCLASS ─┤
 ├─ TOPIC ────┤
 └─ TOPICSTR ─┘
►──┬────────────────────────────┬──┬─────────────┬──┬─────────────┬─┬────────┬─►◄
 └─ WHERE(FilterCondition) ─┘ ├─ ALERTTI ───┤ ├─ EXPIRETI ──┤ └─ ALL ──┘
 ├─ CATEGORY ──┤ ├─ RETINTVL ──┤
 ├─ EVENTID ───┤ ├─ SEVERITY ──┤
 ├─ EVOBJNAME ─┤ ├─ EVSTREAM ──┤
 ├─ EVOBJTYPE ─┤ └─ TEXT ──────┘
 └─ EVQMGR ────┘

13.16.2 Parameter descriptions for DISPLAY EVALERT

(alert-id)
The unique ID of the alert. This parameter is optional.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_ALERT_ID.

CATEGORY
The category of the alerts to be displayed.

This parameter can be used to limit the number of alerts that are displayed. If it is not specified, the
display is not limited in this way.

Page 118

MQEV User Guide – Version 9.4.1

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_ALERT_CATEGORY.

EVOBJTYPE
The object type associated with the alerts to be displayed.

This parameter can be used to limit the number of alerts that are displayed. If it is not specified, the
display is not limited in this way.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_OBJECT_TYPE.

Possible Values are:-

MQSC value Meaning PCF constant

AUTHINFO Authentication information object MQOT_AUTH_INFO

AUTHREC Authorization records MQOT_AUTH_REC

CFSTRUCT CF Structure MQOT_CF_STRUC

CHANNEL Channel MQOT_CHANNEL

CHLAUTH Channel Authentication records MQOT_CHLAUTH

CLNTCONN Client connection channel MQOT_CLNTCONN_CHANNEL

COMMINFO Communication information object MQOT_COMM_INFO

EVQ MQEV Event Queue MQG_OT_EVENT_QUEUE

LISTENER Listener MQOT_LISTENER

NAMELIST Namelist MQOT_NAMELIST

NONE None MQOT_NONE

POLICY Protection Policy MQOT_PROT_POLICY

PROCESS Process MQOT_PROCESS

QUEUE Queue MQOT_Q

QMGR Queue manager MQOT_Q_MGR

RQMNAME Remote queue manager MQOT_REMOTE_Q_MGR_NAME

SERVICE Service object MQOT_SERVICE

STGCLASS Storage Class MQOT_STORAGE_CLASS

SUB Subscription MQG_OT_SUB

TOPIC Topic MQOT_TOPIC

TOPICSTR Topic String MQG_OT_TOPICSTR

EVOBJNAME
The object associated with the alerts to be displayed.

This parameter can be used to limit the number of alerts that are displayed. If it is not specified, the
display is not limited in this way.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_OBJECT.

EVQMGR
The queue manager associated with the alerts to be displayed.

This parameter can be used to limit the number of alerts that are displayed. If it is not specified, the
display is not limited in this way.

Page 119

MQEV User Guide – Version 9.4.1

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_ALERT_Q_MGR.

MINSEV
The minimum severity of the alerts to be displayed.

This parameter can be used to limit the number of alerts that are displayed. If it is not specified, then a
value of WARN (MQG_SEVERITY_WARN) is used. Or, put another way, alerts of severity INFO are
not displayed by default.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MINIMUM_SEVERITY.

Possible values are:-

MQSC value Meaning PCF constant

TERM Termination MQG_SEVERITY_TERM

SEVERE Severe Error MQG_SEVERITY_SEVERE

ERROR Error. MQG_SEVERITY_ERROR

WARN Warning. This is the default value on DISPLAY MQG_SEVERITY_WARN

INFO Information MQG_SEVERITY_INFO

WHERE
Specify a filter condition to only display alerts that satisfy the selection criterion of the filter condition.
For more about the WHERE clause see Chapter 10 Where Clause() on page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_WHERE.

EVALERT Attributes
The attribute list can specify any of the following values. When using the PCF interface, this is an
MQCFIL parameter with identifier MQG_ATTR_ALERT_ATTRS.

MQSC Value PCF Constant PCF Type Description

ALL MQIACF_ALL N/A All attributes

ALERTTI MQG_ATTR_ALERT_TIME MQCFIN64 The date and time, in local time, the alert was raised. 23

CATEGORY MQG_ATTR_ALERT_CATEGORY MQCFST The category of the alert.

EVENTID MQG_ATTR_EVENT_ID MQCFIN The unique ID of the event this alert is about.

EVOBJNAME MQG_ATTR_OBJECT MQCFST The object name to which this alert is associated.

EVOBJTYPE MQG_ATTR_OBJECT_TYPE MQCFIN The type of object that the object name references. If the
alert was added with EVOBJTYPE(NONE) or by omitting
EVOBJTYPE, this parameter will be empty on output.

EVSTREAM MQG_ATTR_STREAM_NAME MQCFST The stream name to which this alert is associated.

EVQMGR MQG_ATTR_ALERT_Q_MGR MQCFST The queue manager to which this alert is associated.

EXPIRETI MQG_ATTR_EXPIRY_TIME MQCFIN64 The date and time, in local time, the alert will expire. 23

RETINTVL MQG_ATTR_RETENTION_INTERVAL MQCFIN The retention interval, in seconds, of this alert.

SEVERITY MQG_ATTR_ALERT_SEVERITY MQCFIN The severity of the alert.

TEXT MQG_ATTR_ALERT_TEXT MQCFST The text of the alert.

23 The number of seconds since 1st January 1970 – also known as Unix time or Epoch time.

Page 120

MQEV User Guide – Version 9.4.1

13.17 DISPLAY EVEMIT
Use the MQSC command DISPLAY EVEMIT (or it's equivalent PCF command MQG_CMD_DISPLAY_EV_EMIT) to
display the emitter object configuration.

13.17.1 Syntax diagram for DISPLAY EVEMIT

►►─ DISPLAY EVEMIT(emit-object-name) ─┬────────────────────────────┬───────────────►
 └─ WHERE(FilterCondition) ─┘
►───┬─────────────┬─────┬─────────────┬────────┬────────┬───────────────────────────►◄
 ├─ DESCR ─────┤ ├─ MSGPERS ───┤ └─ ALL ──┘
 ├─ ERRORCT ───┤ ├─ ONERROR ───┤
 ├─ FILE ──────┤ ├─ PUT ───────┤
 ├─ FORMAT ────┤ ├─ QUEUE ─────┤
 ├─ GROUPING───┤ ├─ READER ────┤
 ├─ MAXSIZE ───┤ └─ ZEROVALS ──┘
 └─ MSGCT ─────┘

13.17.2 Parameter descriptions for DISPLAY EVEMIT

(emit-object-name)
The emitter object name to be displayed. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_EMIT_NAME.

WHERE
Specify a filter condition to only display emitter objects that satisfy the selection criterion of the filter
condition. For more about the WHERE clause see Chapter 10 Where Clause() on page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_WHERE.

EVEMIT Attributes
The attribute list can specify any of the following values. When using the PCF interface, this is an
MQCFIL parameter with identifier MQG_ATTR_EV_EMIT_ATTRS.

MQSC Value PCF Constant PCF Type Description

ALL MQIACF_ALL N/A All attributes

DESCR MQG_ATTR_EMIT_DESC MQCFST A text description of the emit object.

ERRORCT MQG_ATTR_ERROR_COUNT MQCFIN The number of messages that were unable to be written to the
EVEMIT queue or file.

FILE MQG_ATTR_EMIT_FILE_NAME MQCFST The file name to emit data to.

FORMAT MQG_ATTR_EMIT_FORMAT MQCFIN The format that the data will be emitted in.

GROUPING MQG_ATTR_EMIT_GROUPING MQCFIN Whether event data should remain grouped as MQ issued it.

MAXSIZE MQG_ATTR_MAX_SIZE MQCFIN The maximum size of emitted messages

MSGCT MQG_ATTR_MSG_COUNT MQCFIN The number of messages that have been written to the queue
or file since MQEV started. This number is not hardened, and
starts counting from zero each time MQEV starts up.

MSGPERS MQG_ATTR_MSG_PERSISTENCE MQCFIN The persistence of emitted messages

ONERROR MQG_ATTR_ON_ERROR MQCFIN How to behave when an emitted message cannot be put.

Page 121

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

PUT MQG_ATTR_PUT_TRANSACT MQCFIN The transactionality of emitted messages

QUEUE MQG_ATTR_EMIT_Q_NAME MQCFST The queue to emit data to.

READER MQG_ATTR_READER MQCFIN The intended reader of the emitted data.

ZEROVALS MQG_ATTR_ZERO_VALUES MQCFIN Whether zero values are included in the emitted data.

Page 122

MQEV User Guide – Version 9.4.1

13.18 DISPLAY EVENTS
Use the MQSC command DISPLAY EVENTS (or it's equivalent PCF command MQG_CMD_DISPLAY_EVENTS) to
display the events processed and stored by MQEV.

13.18.1 Syntax diagram for DISPLAY EVENTS

►►─ DISPLAY EVENTS(wildcarded-stream-name) ─┬──────────────────────────────────┬─►
 └─ EVQMGR(wildcarded-qmgr-name) ─┘

 ┌─ DISPCMDS(ev-obj-value) ─┐ ┌─ DISTYPE(SUMMARY) ──────────┐
►───┼────────────────────────────┼───┼───────────────────────────────┼─────────────►
 └─ DISPCMDS(─┬─ HIDE──┬─) ─┘ └─ DISTYPE(─┬─ DETAIL────┬─) ─┘
 └─ SHOW ─┘ ├─ CONDENSE ─┤
 └─ MINIMUM ──┘

►───┬───────────────────────┬────────┬─────────────────────────────────┬───────────►
 └─ EVENTID(event-id) ─┘ └─ EVREASON(─┬─ CFGCHGOBJ ─┬─) ─┘
 ├─ CHLNOTAVL ─┤
 ├─ INHPUT ────┤
 : :

►───┬─────────────────────────────┬───────────┬─────────────────────────────────┬──►
 └─ EVTYPE(─┬─ AUTHOR ──┬─) ─┘ └─ EVOBJTYPE(─┬─ AUTHINFO ─┬─) ─┘
 ├─ CHANNEL ─┤ ├─ AUTHREC ──┤
 ├─ COMMAND ─┤ ├─ CFSTRUCT ─┤
 ├─ CONFIG ──┤ ├─ CHANNEL ──┤
 ├─ IMSBR ───┤ ├─ CHLAUTH ──┤
 ├─ INHIBIT ─┤ ├─ CLNTCONN ─┤
 ├─ LOCAL ───┤ ├─ COMMINFO ─┤
 ├─ LOGGER ──┤ ├─ LISTENER ─┤
 ├─ PERFM ───┤ ├─ NAMELIST ─┤
 ├─ REMOTE ──┤ ├─ PROCESS ──┤
 ├─ SSL ─────┤ ├─ QUEUE ────┤
 └─ STRSTP ──┘ ├─ QMGR ─────┤
 ├─ RQMNAME ──┤
 ├─ SERVICE ──┤
 ├─ STGCLASS ─┤
 ├─ SUB ──────┤
 ├─ TOPIC ────┤
 └─ TOPICSTR ─┘
 ┌─ FROM('-24h') ────────┐ ┌─ TO('now') ─────────┐
►───┼─────────────────────────┼──┼───────────────────────┼──┬─────────────────┬────►
 └─ FROM(date-and-time) ─┘ └─ TO(date-and-time) ─┘ └─ TZ(integer) ─┘

 ┌─ MAXRESP(100) ─────┐ ┌─ MAXRECS(ev-value) ─┐
►───┼──────────────────────┼─────┼───────────────────────┼─────────────────────────►
 └─ MAXRESP(integer) ─┘ └─ MAXRECS(integer) ─┘

►───┬───────────────────────────────────────┬───┬──────────────────────┬───────────►
 └─ EVOBJNAME(wildcarded-object-name) ─┘ └─ EVUSERID(userid) ─┘

►───┬────────────────────────────┬───┬────────────────┬─┬─────────┬───────────────►◄
 └─ WHERE(FilterCondition) ─┘ └─┤ attributes ├─┘ └── ALL ──┘

Page 123

MQEV User Guide – Version 9.4.1

13.18.2 Parameter descriptions for DISPLAY EVENTS

(wildcarded-stream-name)
The stream name from which events are to be displayed. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_STREAM_NAME.

DISPCMDS
How to handle command events stored that record DISPLAY commands. This over-rides the value on the
EV object. If not specified, that value is used.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_DISPLAY_COMMANDS.

Possible Values are:-

HIDE
Do not show any DISPLAY command events by default.
The PCF value for this is MQG_DISPCMDS_HIDE.

SHOW
Show DISPLAY command events.
The PCF value for this is MQG_DISPCMDS_SHOW.

DISTYPE
The type of display to return. IBM MQ Events can contain a lot of fields. It can therefore be useful to be
able to choose how many of these fields are displayed by default.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_DISPLAY_TYPE.

Possible Values are:-

DETAIL
Show all event fields. This display type will display the Queue Manager, the Event Type, the Event
Time, the Object and Object Type of the event.

CONDENSE
Show a condensed view. This display type will display the same fields as for DETAIL, but fields
with no value are not shown. When displaying the BEFORE and AFTER details of a configuration
change event, only the changed values are shown.

SUMMARY
Show a summary view. This is the default value. This display type will just display the Queue
Manager, the Event Time and the field, SUMMARY, which contains a text description of the event.

MINIMUM
Show a minimum view. This display type will just display the Queue Manager and Event Type of
the event. If you want to see a very specific set of event fields, use this as a starting point and add
the additional fields you want to see.

Of course with any display type you can add additional fields to the display as required.

EVENTID
The unique ID of an event on a particular queue manager. If this attribute is specified, the EVQMGR must
not be generic.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_EVENT_ID.

Page 124

MQEV User Guide – Version 9.4.1

EVOBJNAME
The name of the object to show related events about. This can be a wildcarded string. The maximum
length of this string is MQ_OBJECT_NAME_LENGTH (48).

This parameter can be used to limit the number of events that are displayed. If it is not specified, the
display is not limited in this way.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_OBJECT.

EVOBJTYPE
The object type of events to be displayed.

This parameter can be used to limit the number of events that are displayed. If it is not specified, the
display is not limited in this way.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_OBJECT_TYPE.

Possible Values are:-

MQSC value Meaning PCF constant

AUTHINFO Authentication information object MQOT_AUTH_INFO

AUTHREC Authorization records (this OBJTYPE is only applicable to
configuration events for AUTHRECS

MQOT_AUTH_REC

CFSTRUCT CF Structure (this OBJTYPE is only applicable to events on
z/OS queue managers)

MQOT_CF_STRUC

CHANNEL Channel MQOT_CHANNEL

CHLAUTH Channel Authentication records MQOT_CHLAUTH

CLNTCONN Client connection channel MQOT_CLNTCONN_CHANNEL

COMMINFO Communication information object (this OBJTYPE is only
applicable to events on non-z/OS queue managers)

MQOT_COMM_INFO

LISTENER Listener (this OBJTYPE is only applicable to events on non-
z/OS queue managers)

MQOT_LISTENER

NAMELIST Namelist MQOT_NAMELIST

PROCESS Process MQOT_PROCESS

QUEUE Queue MQOT_Q

QMGR Queue manager MQOT_Q_MGR

RQMNAME Remote queue manager (this OBJTYPE is only applicable
within configuration events for AUTHRECS)

MQOT_REMOTE_Q_MGR_NAME

SERVICE Service object (this OBJTYPE is only applicable to events on
non-z/OS queue managers)

MQOT_SERVICE

STGCLASS Storage Class (this OBJTYPE is only applicable to events on
z/OS queue managers)

MQOT_STORAGE_CLASS

SUB Subscription MQG_OT_SUB

TOPIC Topic MQOT_TOPIC

TOPICSTR Topic String MQG_OT_TOPICSTR

Page 125

MQEV User Guide – Version 9.4.1

EVREASON
The reason of the events to be displayed. This parameter can be used to limit the number of events that
are displayed. If it is not specified, the display is not limited in this way.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_EVENT_REASON.

Values such as the following:-

MQSC Value Meaning PCF Constant

AUTHOR Any authority event MQG_EVENT_REASON_AUTH

AUTCON Connect not authorised MQG_EVENT_REASON_AUTH_CONN_NOT_AUTH

AUTSYSCON System connection not authorised MQG_EVENT_REASON_AUTH_SYS_CONN_NOT_AUTH

AUTCSP CSP not authorised MQG_EVENT_REASON_AUTH_CSP_NOT_AUTH

AUTOPEN Open not authorised MQG_EVENT_REASON_AUTH_OPEN_NOT_AUTH

AUTCLOSE Close not authorised MQG_EVENT_REASON_AUTH_CLOSE_NOT_AUTH

… … …

For a complete list please refer to Appendix D. Event Reasons on page 235.

EVTYPE
The type of events to be displayed. This parameter can be used to limit the number of events that are
displayed. If it is not specified, the display is not limited in this way.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EVENT_TYPE.

Possible Values are:-

MQSC value Meaning PCF constant

AUTHOR Authority events MQG_EVENT_REASON_AUTH

CHANNEL Channel events MQG_EVENT_REASON_CHANNEL

COMMAND Command events MQG_EVENT_REASON_CMD

CONFIG Configuration events MQG_EVENT_REASON_CONFIG

IMSBR IMS Bridge events MQG_EVENT_REASON_BRIDGE

INHIBIT Inhibit events MQG_EVENT_REASON_INHIBIT

LOCAL Local events MQG_EVENT_REASON_LOCAL

LOGGER Logger events MQG_EVENT_REASON_LOGGER

PERFM Performance events MQG_EVENT_REASON_PERFM

REMOTE Remote events MQG_EVENT_REASON_REMOTE

SSL SSL/TLS events MQG_EVENT_REASON_SSL

STRSTP Start/Stop events MQG_EVENT_REASON_STRSTP

IMSBR IMS Bridge events MQG_EVENT_REASON_IMSBRIDGE

UNKNOWN Unknown events MQG_EVENT_REASON_UNKNOWN

Page 126

MQEV User Guide – Version 9.4.1

EVQMGR
The queue manager associated with the events to be displayed. This can be a wildcarded string.

This parameter can be used to limit the number of events that are displayed. If it is not specified, the
display is not limited in this way.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_Q_MGR_NAME.

EVUSERID
The userid (if any) that is associated with the event. The maximum length of this string is
MQ_USER_ID_LENGTH (12).

This parameter can be used to limit the number of events that are displayed. If it is not specified, the
display is not limited in this way.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_USER_ID.

MAXRECS
The number of source records which should be used to construct the response. This prevents inadvertent
consumption of CPU when issuing queries against large amounts of data.

The default value is taken from the EV object which itself has a default value of 1,000,000.

This value can not be larger than 100,000,000.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MAX_RECORDS.

MAXRESP
The number of responses to be returned to this DISPLAY command. The default value is 100.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MAX_RESPONSES.

FROM
The time before which no events should be returned. The maximum length of this string is
MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_FROM.

Many different parameter formats are supported, the time can be specified in either absolute or relative
terms. The following are supported:

Absolute values Meaning

now The current time

8 Eight AM

8.30 Eight thirty AM

8.31.46 or 8:31:46 Eight thirty-one and 46 seconds

04-12 12th April (this year)
The day and month fields must always be two digits

2018-10-18 18th October 2018
The year field must always be four digits

2018-10-18 8.31.46 or
2018-10-18 8:31:46

An explicit date and time

Page 127

MQEV User Guide – Version 9.4.1

Relative values Relative to 'the other' time parameter
Note that both times can not be relative

-2day (or -2d) Two days before

+1d One day after

-4hour (or -4hr or -4h) Four hours before

-3minute (or -3min or -3m) Three minutes before

-10second (-10 sec or -10s or -10) Ten seconds before

-1d4h3m6s Values can be combined without spaces

If not specified then the value '-24hour' will be used.

TO
The time after which no events should be returned. The maximum length of this string is
MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_TO.

Please see the description of the FROM parameter for the allowed values.

If not specified then the value 'now' will be used.

TZ
The bias, in minutes, of the time zone that the results should be returned in.

When using the PCF interface, this is an MQCFIN parameter with identifier MQC_ATTR_TIMEZONE.

If not specified then the results will be returned in UTC.

WHERE
Specify a filter condition to only display events that satisfy the selection criterion of the filter condition.
For more about the WHERE clause see Chapter 10 Where Clause() on page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_WHERE.

EVENTS Attributes
The attribute list can specify any of the following values. When using the PCF interface, this is an
MQCFIL parameter with identifier MQG_ATTR_EV_EVENTS_ATTRS.

MQSC Value PCF Constant Description

ALL MQIACF_ALL All attributes

Event Field As per IBM MQ command reference

Page 128

MQEV User Guide – Version 9.4.1

13.19 DISPLAY EVQ
Use the MQSC command DISPLAY EVQ (or it's equivalent PCF command MQG_CMD_DISPLAY_EV_Q) to display
the the event queues processed by the MQEV event processor.

13.19.1 Syntax diagram for DISPLAY EVQ

►►─ DISPLAY EVQ(wildcarded-queue-name) ─┬────────────────────────────┬──►
 └─ WHERE(FilterCondition) ─┘

►─┬──────────────┬──┬──────────────┬──┬─────────┬────────────────────────►◄
 ├── ACCTMQICT ─┤ ├── FWDPSIST ──┤ └── ALL ──┘
 ├── ACCTQCT ───┤ ├── LSTMSGTI───┤
 ├── BORQCT ────┤ ├── MSGS ──────┤
 ├── DESCR──────┤ ├── STATCHLCT ─┤
 ├── DLQCT ─────┤ ├── STATMQICT ─┤
 ├── ERRORCT ───┤ ├── STATQCT ───┤
 ├── EVENTCT ───┤ ├── STATUS ────┤
 └── FWDQ ──────┘ ├── SUSPENDED ─┤
 └── TEMPQ ─────┘

13.19.2 Parameter descriptions for DISPLAY EVQ

(wildcarded-queue-name)
The event queue name to be displayed. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EVENT_Q_NAME.

WHERE
Specify a filter condition to only display event queues that satisfy the selection criterion of the filter
condition. For more about the WHERE clause see Chapter 10 Where Clause() on page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_WHERE.

EVQ Attributes
The attribute list can specify any of the following values. When using the PCF interface, this is an
MQCFIL parameter with identifier MQG_ATTR_EV_QUEUE_ATTRS.

MQSC Value PCF Constant PCF Type Description

ALL MQIACF_ALL N/A All attributes

ACCTMQICT MQG_ATTR_ACCT_MQI_COUNT MQCFIN The number of MQI Accounting records processed on this
queue since last RESET. The total of this value for all
queues on this queue manager will equal DISPLAY
EVQMGR ACCTMQICT

ACCTQCT MQG_ATTR_ACCT_Q_COUNT MQCFIN The number of Queue Accounting records processed on
this queue since last RESET. The total of this value for all
queues on this queue manager will equal DISPLAY
EVQMGR ACCTQCT

BORQCT MQG_ATTR_BORQ_COUNT MQCFIN The number of poison messages that have been written to
the Backout Requeue queue.

Page 129

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

DESCR MQG_ATTR_EVENT_Q_DESC MQCFST A description of the event queue.

DLQCT MQG_ATTR_DLQ_COUNT MQCFIN The number of messages successfully sent to the dead-
letter queue. An error will be written to the MQEV log
indicating the reason given for any failed puts to the dead-
letter queue.

ERRORCT MQG_ATTR_ERROR_COUNT MQCFIN The number of messages found on this queue which were
not event messages.

EVENTCT MQG_ATTR_EVENT_COUNT MQCFIN The number of event message processed on this queue
since last RESET. The total of this value for all queues on
this queue manager will equal DISPLAY EVQMGR
EVENTCT

FWDQ MQG_ATTR_FORWARD_Q_NAME MQCFST The queue name event messages should be forwarded to
for daisy-chaining purposes.

FWDPSIST MQG_ATTR_FORWARD_PERSISTENCE MQCFIN The persistence of messages that are forwarded to the
queue named in FWDQ.

LSTMSGTI MQG_ATTR_LAST_MSG_TIME MQCFIN64 The time when the last message was processed from this
queue. 24

MSGS MQG_ATTR_NUM_MESSAGES MQCFIN The number of messages processed from this queue since
this instance of MQEV started up.

STATCHLCT MQG_ATTR_STAT_CHL_COUNT MQCFIN The number of Channel Statistics records processed on this
queue since last RESET. The total of this value for all
queues on this queue manager will equal DISPLAY
EVQMGR STATCHLCT

STATMQICT MQG_ATTR_STAT_MQI_COUNT MQCFIN The number of MQI Statistics records processed on this
queue since last RESET. The total of this value for all
queues on this queue manager will equal DISPLAY
EVQMGR STATMQICT

STATQCT MQG_ATTR_STAT_Q_COUNT MQCFIN The number of Queue Statistics records processed on this
queue since last RESET. The total of this value for all
queues on this queue manager will equal DISPLAY
EVQMGR STATQCT

STATUS MQG_ATTR_Q_STATUS MQCFIN Whether this queue is being successfully used by MQEV.

SUSPENDED MQG_ATTR_SUSPENDED MQCFIN Whether this queue is currently suspended from
processing.

TEMPQ MQG_ATTR_TEMPQ_DISP MQCFIN How statistics records for temporary queues are handled.

24 The number of seconds since 1st January 1970 – also known as Unix time or Epoch time.

Page 130

MQEV User Guide – Version 9.4.1

13.20 DISPLAY EVQMGR
Use the MQSC command DISPLAY EVQMGR (or it's equivalent PCF command MQG_CMD_DISPLAY_EV_Q_MGR)
to display the details about each different queue manager for which items (events, accounting and statistics records)
have been processed.

The event counts displayed on this command can be reset using the RESET EV command. These counts are not
affected by event data being expired when it passes its retention interval. It is expected that counts will be reset on a
more frequent basis than data will be expired.

13.20.1 Syntax diagram for DISPLAY EVQMGR

►►─ DISPLAY EVQMGR(wildcarded-qmgr-name) ─┬────────────────────────────┬─────►
 └─ WHERE(FilterCondition) ─┘

►───┬──────────────┬───┬──────────────┬───┬──────────────┬───┬─────────┬──────►◄
 ├── ACCTMQICT ─┤ ├── EVENTCT ───┤ ├── REMOTECT ──┤ └── ALL ──┘
 ├── ACCTQCT ───┤ ├── IMSBRCT ───┤ ├── SSLCT ─────┤
 ├── ALERTCT ───┤ ├── INHIBITCT ─┤ ├── STATCHLCT ─┤
 ├── AUTHORCT ──┤ ├── LOCALCT ───┤ ├── STATMQICT ─┤
 ├── CHLCT ─────┤ ├── LOGGERCT ──┤ ├── STATQCT ───┤
 ├── CMDCT ─────┤ └── PERFMCT ───┘ └── STRSTPCT ──┘
 └── CONFIGCT ──┘

13.20.2 Parameter descriptions for DISPLAY EVQMGR

(wildcarded-qmgr-name)
The queue manager name to be displayed. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_Q_MGR_NAME.

WHERE
Specify a filter condition to only display queue managers that satisfy the selection criterion of the filter
condition. For more about the WHERE clause see Chapter 10 Where Clause() on page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_WHERE.

EVQMGR Attributes
The attribute list can specify any of the following values. When using the PCF interface, this is an
MQCFIL parameter with identifier MQG_ATTR_EV_QMGR_ATTRS.

The total number of all the event type counts will equal the EVENTCT attribute.

MQSC Value PCF Constant PCF Type Description

ALL MQIACF_ALL N/A All attributes

ACCTQCT MQG_ATTR_ACCT_Q_COUNT MQCFIN The number of Queue Accounting records processed for
this queue manager. These are the records controlled by the
IBM MQ ACCTQ switch.

ACCTMQICT MQG_ATTR_ACCT_MQI_COUNT MQCFIN The number of MQI Accounting records processed for this
queue manager. These are the records controlled by the
IBM MQ ACCTMQI switch.

Page 131

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

ALERTCT MQG_ATTR_ALERT_COUNT MQCFIN The number of alerts for this queue manager. The total of
this number for all queue managers will equal DISPLAY
EV ALERTS.

AUTHORCT MQG_ATTR_EVENT_AUTHOR_COUNT MQCFIN The number of Authority events processed for this queue
manager. These are the events controlled by the IBM MQ
AUTHOREV switch.

CHLCT MQG_ATTR_EVENT_CHL_COUNT MQCFIN The number of Channel events processed for this queue
manager. These are the events controlled by the IBM MQ
CHLEV switch.

CMDCT MQG_ATTR_EVENT_CMD_COUNT MQCFIN The number of Command events processed for this queue
manager. These are the events controlled by the IBM MQ
CMDEV switch.

CONFIGCT MQG_ATTR_EVENT_CONFIG_COUNT MQCFIN The number of Configuration events processed for this
queue manager. These are the events controlled by the
IBM MQ CONFIGEV switch.

EVENTCT MQG_ATTR_EVENT_COUNT MQCFIN The total number of events processed for this queue
manager. The total of this number for all queue managers
will equal DISPLAY EV TOTALEV.

IMSBRCT MQG_ATTR_EVENT_BRIDGE_COUNT MQCFIN The number of IMS Bridge events processed for this queue
manager.

INHIBITCT MQG_ATTR_EVENT_INHIBIT_COUNT MQCFIN The number of Inhibit events processed for this queue
manager. These are the events controlled by the IBM MQ
INHIBITEV switch.

LOCALCT MQG_ATTR_EVENT_LOCAL_COUNT MQCFIN The number of Local events processed for this queue
manager. These are the events controlled by the IBM MQ
LOCALEV switch.

LOGGERCT MQG_ATTR_EVENT_LOGGER_COUNT MQCFIN The number of Logger events processed for this queue
manager. These are the events controlled by the IBM MQ
LOGGEREV switch.

PERFMCT MQG_ATTR_EVENT_PERFM_COUNT MQCFIN The number of Performance events processed for this
queue manager. These are the events controlled by the
IBM MQ PERFMEV switch.

REMOTECT MQG_ATTR_EVENT_REMOTE_COUNT MQCFIN The number of Remote events processed for this queue
manager. These are the events controlled by the IBM MQ
REMOTEEV switch.

SSLCT MQG_ATTR_EVENT_SSL_COUNT MQCFIN The number of SSL events processed for this queue
manager. These are the events controlled by the IBM MQ
SSLEV switch.

STATCHLCT MQG_ATTR_STAT_CHL_COUNT MQCFIN The number of Channel Statistics records processed for
this queue manager. These are the records controlle by the
IBM MQ STATCHL switch.

STATMQICT MQG_ATTR_STAT_MQI_COUNT MQCFIN The number of MQI Statistics records processed for this
queue manager. These are the records controlled by the
IBM MQ STATMQI switch.

STATQCT MQG_ATTR_STAT_Q_COUNT MQCFIN The number of Queue Statistics records processed for this
queue manager. These are the records controlled by the
IBM MQ STATQ switch.

STRSTPCT MQG_ATTR_EVENT_STRSTP_COUNT MQCFIN The number of Start/Stop events processed for this queue
manager. These are the events controlled by the IBM MQ
STRSTPEV switch.

Page 132

MQEV User Guide – Version 9.4.1

13.21 DISPLAY EVSTREAM
Use the MQSC command DISPLAY EVSTREAM (or it's equivalent PCF command
MQG_CMD_DISPLAY_EV_STREAM) to display the attributes of a stream.
Streams are used to store the records (events, accounting and statistics) processed by MQEV.

13.21.1 Syntax diagram for DISPLAY EVSTREAM

►►─ DISPLAY EVSTREAM(wildcarded-stream-name) ──┬──────────────────────────┬────►
 └─TYPE(─┬─ EVENTS ──┬─) ─┘
 ├─ STATQ ───┤
 ├─ STATCHL ─┤
 ├─ STATMQI ─┤
 ├─ ACCTQ ───┤
 └─ ACCTMQI ─┘

►─┬────────────────────────────┬───┬──────────────┬───┬─────────┬───────────────►◄
 └─ WHERE(FilterCondition) ─┘ ├── AGGRINT ───┤ └── ALL ──┘
 ├── DEFAULT ───┤
 ├── DESCR ─────┤
 ├── DISIMPLCT──┤
 ├── EVEMIT ────┤
 ├── RETINTVL ──┤
 └── TYPE ──────┘

13.21.2 Parameter descriptions for DISPLAY EVSTREAM

(wildcarded-stream-name)
The stream name to be displayed. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_STREAM_NAME.

TYPE
The type of streams to display.

This parameter can be used to limit the number of streams that are displayed. If it is not specified, the
display is not limited in this way.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_STREAM_TYPE.

Possible values are:-

EVENTS
Display only streams that contain event data.
The PCF value for this is MQG_STREAM_TYPE_EVENTS.

STATQ
Display only streams that contain queue statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_Q.

STATCHL
Display only streams that contain channel statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_CHL.

Page 133

MQEV User Guide – Version 9.4.1

STATMQI
Display only streams that contain MQI statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_MQI.

ACCTQ
Display only streams that contain queue accounting data.
The PCF value for this is MQG_STREAM_TYPE_ACCT_Q.

ACCTMQI
Display only streams that contain MQI accounting data.
The PCF value for this is MQG_STREAM_TYPE_ACCT_MQI.

WHERE
Specify a filter condition to only display streams that satisfy the selection criterion of the filter condition.
For more about the WHERE clause see Chapter 10 Where Clause() on page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_WHERE.

EVSTREAM Attributes
The attribute list can specify any of the following values. When using the PCF interface, this is an
MQCFIL parameter with identifier MQG_ATTR_EV_STREAM_ATTRS.

MQSC Value PCF Constant PCF Type Description

ALL MQIACF_ALL N/A All attributes

AGGRINT MQG_ATTR_AGGR_INTERVAL MQCFIN The aggregation interval (in seconds).

DEFAULT MQG_ATTR_DEFAULT_STREAM MQCFIN Whether this is the default stream.

DESCR MQG_ATTR_STREAM_DESC MQCFST A text description of the stream.

DISIMPLCT MQG_ATTR_DISPLAY_IMPLICIT MQCFIN Whether this stream should be displayed implicitly

EVEMIT MQG_ATTR_EMIT_NAME MQCFST The name of an EVEMIT object.

RETINTVL MQG_ATTR_RETENTION_INTERVAL MQCFIN The retention interval for data on this stream (in days).

TYPE MQG_ATTR_STREAM_TYPE MQCFIN The type of data on this stream.

Page 134

MQEV User Guide – Version 9.4.1

13.22 DISPLAY EVSTRMST
Use the MQSC command DISPLAY EVSTRMST (or it's equivalent PCF command
MQG_CMD_DISPLAY_EV_STREAM_STATUS) to display the run-time status of streams in use on various queue
managers.

Streams are used to store the items (events, accounting and statistics records) processed by MQEV.

13.22.1 Syntax diagram for DISPLAY EVSTRMST

►►─ DISPLAY EVSTRMST(wildcarded-stream-name) ──┬──────────────────────────┬──►
 └─TYPE(─┬─ EVENTS ──┬─) ─┘
 ├─ STATQ ───┤
 ├─ STATCHL ─┤
 ├─ STATMQI ─┤
 ├─ ACCTQ ───┤
 └─ ACCTMQI ─┘
►─┬──────────────────────────────────┬──┬────────────────────────────┬───────►
 └─ EVQMGR(wildcarded-qmgr-name) ─┘ └─ WHERE(FilterCondition) ─┘

►─┬──────────────┬───┬─────────┬──►◄
 ├── AGGRMSGS ──┤ └── ALL ──┘
 ├── DATAMSGS ──┤
 ├── EVQMGR ────┤
 ├── ITEMS ─────┤
 ├── LSTMSGTI───┤
 ├── MEMORY ────┤
 ├── OLDEST ────┤
 └── TYPE ──────┘

13.22.2 Parameter descriptions for DISPLAY EVSTRMST

(wildcarded-stream-name)
The stream name to be displayed. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_STREAM_NAME.

EVQMGR
The queue manager associated with the stream-name to be displayed. This can be a wildcarded string.

This parameter can be used to limit the number of streams that are displayed. If it is not specified, the
display is not limited in this way.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_Q_MGR_NAME.

TYPE
The type of streams to display.

This parameter can be used to limit the number of streams that are displayed. If it is not specified, the
display is not limited in this way.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_STREAM_TYPE.

Possible values are:-

Page 135

MQEV User Guide – Version 9.4.1

EVENTS
Display only streams that contain event data.
The PCF value for this is MQG_STREAM_TYPE_EVENTS.

STATQ
Display only streams that contain queue statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_Q.

STATCHL
Display only streams that contain channel statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_CHL.

STATMQI
Display only streams that contain MQI statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_MQI.

ACCTQ
Display only streams that contain queue accounting data.
The PCF value for this is MQG_STREAM_TYPE_ACCT_Q.

ACCTMQI
Display only streams that contain MQI accounting data.
The PCF value for this is MQG_STREAM_TYPE_ACCT_MQI.

WHERE
Specify a filter condition to only display status information for those streams that satisfy the selection
criterion of the filter condition. For more about the WHERE clause see Chapter 10 Where Clause() on
page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_WHERE.

EVSTRMST Attributes
The attribute list can specify any of the following values. When using the PCF interface, this is an
MQCFIL parameter with identifier MQG_ATTR_EV_STREAM_STATUS_ATTRS.

MQSC Value PCF Constant PCF Type Description

ALL MQIACF_ALL N/A All attributes

AGGRMSGS MQG_ATTR_AGGR_MSGS MQCFIN The number of transient messages used to store
aggregated data. It is normal that this number grows and
shrinks over time.

DATAMSGS MQG_ATTR_DATA_MSGS MQCFIN The number of messages being used to store data for this
stream. This will be less than the number of items since
many items are compressed into each message.

EVQMGR MQG_ATTR_Q_MGR_NAME MQCFST The queue manager name related to this stream.

LSTMSGTI MQG_ATTR_LAST_MSG_TIME MQCFIN64 The time when the last messages was added to this
stream25. If this is empty, no messages have been added
to this stream since MQEV last started.

ITEMS MQG_ATTR_NUM_ITEMS MQCFIN The number of items (events, accounting or statistics
records) that have been stored on this stream.

MEMORY MQG_ATTR_MEMORY MQCFIN The number of kilobytes of data stored on this stream
(rounded up).

OLDEST MQG_ATTR_OLDEST_ITEM MQCFIN The age, in days, of the oldest item stored on this stream.

TYPE MQG_ATTR_STREAM_TYPE MQCFIN The type of this stream.

25 The number of seconds since 1st January 1970 – also known as Unix time or Epoch time.

Page 136

MQEV User Guide – Version 9.4.1

13.23 DISPLAY STATCHL
Use the MQSC command DISPLAY STATCHL (or it's equivalent PCF command MQG_CMD_DISPLAY_STAT_CHL)
to display the channel statistics records processed and stored by MQEV. For a description of the statistics fields
provided by MQ please read the MQ documentation

13.23.1 Syntax diagram for DISPLAY STATCHL

►►─ DISPLAY STATCHL(wildcarded-channel-name) ─┬───────────────────────┬───────────────►
 └─ EVQMGR(qmgr-name) ─┘

 ┌─ GAPFILL(NO) ───────────────┐ ┌─ SUM(CHANNEL) ───────────┐
►───┼───────────────────────────────┼────┼────────────────────────────┼────────────────►
 └─ GAPFILL(─┬─ INNER ────┬─) ─┘ ├─ SUM(─┬─ NONE ─────┬──) ─┤
 ├─ ACTIVITY ─┤ │ └─ TOTAL ────┘ │
 └─ FULL ─────┘ │ ┌─,────────────┐ │
 │ ↓ │ │
 └─ SUM(─┬─ CHANNEL ──┬┴─) ─┘
 ├─ PREFIX ───┤
 ├─ PREFIX2 ──┤
 ├─ SUFFIX ───┤
 ├─ CONNAME ──┤
 ├─ RQMNAME ──┤
 └─ STREAM ───┘

 ┌─ FROM('-24h') ────────┐ ┌─ TO('now') ─────────┐ ┌─ TZ(0) ───────┐
►───┼─────────────────────────┼──┼───────────────────────┼──┼─────────────────┼─────────►
 └─ FROM(date-and-time) ─┘ └─ TO(date-and-time) ─┘ └─ TZ(integer) ─┘

 ┌─ COLLATE(NONE) ──────┐ ┌─ ZEROVALS(HIDE) ─┐
►───┼────────────────────────┼───┼────────────────────┼───┬────────────────────┬───────►
 └─ COLLATE(collation) ─┘ └─ ZEROVALS(SHOW) ─┘ └── TITLE(title) ──┘

 ┌─ INTVLALGN(CLOCK) ─┐
►───┼──────────────────────┼──┬────────────────────────┬────────────────────────────────►
 └─ INTVLALGN(MQ) ────┘ └─ INTVL(time-period) ─┘

►───┬─────────────────────────────────────┬──┬─────────────────────────────────────┬────►
 └─ INTVLSTA(date-and-time-seconds) ─┘ └─ INTVLEND(date-and-time-seconds) ─┘

►───┬────────────────────────────┬───┬───────────────────────────────┬──────────────────►
 └─ WHERE(FilterCondition) ─┘ └─ PREWHERE(FilterCondition) ─┘

 ┌─ MAXRECS(ev-value) ─┐ ┌─ MAXRESP(100) ─────┐
►───┼───────────────────────┼─┼──────────────────────┼──┬────────────────┬──┬───────┬──►◄
 └─ MAXRECS(integer) ─┘ └─ MAXRESP(integer) ─┘ └─┤ attributes ├─┘ └─ ALL ─┘

13.23.2 Parameter descriptions for DISPLAY STATCHL

(wildcarded-channel-name)
The queue name for which statistics records are to be displayed. This can be a wildcarded string.

Page 137

https://www.ibm.com/docs/en/ibm-mq/latest?topic=reference-channel-statistics-message-data

MQEV User Guide – Version 9.4.1

When using the PCF interface, this is an MQCFST parameter with identifier
MQCACH_CHANNEL_NAME.

EVQMGR
The queue manager associated with the records to be displayed.

This parameter is used to specify which queue manager you wish to see data from. If it is not specified,
the output shows records from the queue manager you are connected to.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_Q_MGR_NAME.

GAPFILL
Whether to add zeroed records where none exist to produce a set of records that will graph appropriately.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_GAP_FILL.

Possible Values are:-

NO
Do not fill in the gaps with zeroed records.
The PCF value for this is MQG_GAPFILL_NO.

INNER
Produce zeroed records for inner gaps in the set of records.
The PCF value for this is MQG_GAPFILL_INNER.

ACTIVITY
Add zeroed records to produce a set of records that spans the time period where there is any
activity on this queue, not just the activity shown by the attributes displayed.
The PCF value for this is MQG_GAPFILL_ACTIVITY.

FULL
Add zeroed records to produce a set of records that spans the entire time period requested.
The PCF value for this is MQG_GAPFILL_FULL

SUM
Whether the records are summed together, and if so how they are totalled. Multiple values can be
provided in a comma-separated list, except where indicated that a value cannot be combined with any
others.

When multiple values are provided, a record will be returned for each unique combination, e.g.
SUM(CHANNEL, CONNAME) will return one record for each unique combination of channel name and
connection name.

When using the PCF interface, this can be an MQCFIN parameter (should you only need to supply one
value) or an MQCFIL parameter (should you need to supply multiple values) with identifier
MQG_ATTR_SUM.

When any of the SUM values apart from NONE and TOTAL are used without the INTVL attribute, this will
result in a single record per unique key combination being returned. If used with the INTVL attribute, one
record per application will be returned for each interval.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Possible Values are:-

NONE
Do not add together any records. The command returns each individual record as reported by IBM
MQ. This value cannot be combined with any others.
The PCF value for this is MQG_SUM_NONE.

Page 138

MQEV User Guide – Version 9.4.1

CHANNEL26

Add together records that have the same channel name. If used without the INTVL attribute, this
will result in a single record per queue being returned. If used with the INTVL attribute, one record
per channel will be returned for each interval. This is the default value.
The PCF value for this is MQG_SUM_CHANNEL_NAME.

PREFIX26

A record will be returned for each unique first portion of the channel name.
For example queues A.TST and A.PRD will be summed together
The PCF value for this is MQG_SUM_PREFIX.

PREFIX226

A record will be returned for each unique second portion of channel name.
For example queues A.MQGEM.TST and A.MQGEM.PRD will be summed together
The PCF value for this is MQG_SUM_PREFIX2.

SUFFIX26

A record will be returned for each unique last portion of channel name.
For example queues A.TST and B.TXT will be summed together
The PCF value for this is MQG_SUM_SUFFIX.

CONNAME
A record will be returned for each unique connection name
The PCF value for this is MQG_SUM_CONNECTION_NAME.

RQMNAME
A record will be returned for each unique connection name
The PCF value for this is MQG_SUM_REMOTE_QMGR.

STREAM
A record will be returned for each MQEV stream
The PCF value for this is MQG_SUM_STREAM.

TOTAL
Add together all of the records that match the other criteria (e.g. WHERE clause) on the display
command. If used without the INTVL attribute, this will result in only a single record being
returned. If used with the INTVL attribute, one record will be returned for each interval. The queue
name reported on the returned record will reflect the fact that the numbers for many queue names
might have been added together.
Using SUM(TOTAL) may be very useful when treating multiple queue names as the same name for
the purposes of monitoring or charge-back. For example, a set of dynamic queues that all have
similar names, could be totalled as if they were a single queue.
This value cannot be combined with any others.
The PCF value for this is MQG_SUM_TOTAL.

COLLATE
Controls whether the responses should be collated into time intervals. Collation can be useful to display
the 'pattern' of the records rather than just looking at the raw data. For more information about collation
please see Chapter:7 Collation described on page 44.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_COLLATE.

26 Note that at most one of CHANNEL, PREFIX, PREFIX2 and SUFFIX can be specified

Page 139

MQEV User Guide – Version 9.4.1

ZEROVALS
How to handle zero values in the records displayed.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_ZERO_VALUES.

Possible Values are:-

HIDE
Do not show any zero values. This is the default value.
The PCF value for this is MQG_ZEROVALS_HIDE.

SHOW
Show zero values in records.
The PCF value for this is MQG_ZEROVALS_SHOW.

TITLE
This is an optional wild-carded parameter, used when collation is active, which allows the user to select
which records should be returned from the command.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_TITLE. The
maximum length of this string is MQG_TITLE_LENGTH (20).

INTVLALGN
How to align the reported intervals of records. This parameter is only used when an INTVL is set.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_INTERVAL_ALIGN.

CLOCK
Reported intervals are aligned to the clock. That is, if you request an INTVL(4hour), reported
intervals will be at midnight, 4am, 8am, noon and so on. This is the default value.
The PCF value for this is MQG_ALIGN_CLOCK.

MQ
Reported intervals are aligned to the intervals reported by IBM MQ.
The PCF value for this is MQG_ALIGN_MQ.

INTVL
When summing records, the reported records are totalled in intervals of the specified length. See
INTVLALGN for details of the time alignment of these intervals. This parameter is only valid when you are
not using SUM(NONE). The maximum length of this string is MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_INTERVAL.

The interval supplied must be a multiple of the interval used in IBM MQ to collect the statistics in the
first instance, that is the STATINT value. If you are collecting statistics records every 2 hours, you cannot
request that MQEV display records summed into intervals of 45 minutes.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Many different parameter formats are supported to provide an interval. The following are supported:

Values Meaning

2day (or 2d) Two days

4hour (or 4hr or 4h) Four hours

3minute (or 3min or 3m) Three minutes

1d4h Values can be combined without spaces

Page 140

MQEV User Guide – Version 9.4.1

FROM
The time from which records should be returned. The maximum length of this string is
MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_FROM.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Many different parameter formats are supported, the time can be specified in either absolute or relative
terms. The following are supported:

Absolute values Meaning

now The current time

8 Eight AM

8.30 Eight thirty AM

8.31.46 or 8:31:46 Eight thirty-one and 46 seconds

04-12 12th April (this year)
The day and month fields must always be two digits

2018-10-18 18th October 2018
The year field must always be four digits

2018-10-18 8.31.46 or
2018-10-18 8:31:46

An explicit date and time

Relative values Relative to 'the other' time parameter
Note that both times can not be relative

-2day (or -2d) Two days before

+1d One day after

-4hour (or -4hr or -4h) Four hours before

-3minute (or -3min or -3m) Three minutes before

-10second (-10 sec or -10s or -10) Ten seconds before

-1d4h3m6s Values can be combined without spaces

If not specified then the value '-24hour' will be used.

TO
The time up to when records should be returned. The maximum length of this string is
MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_TO.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Please see the description of the FROM parameter for the allowed values.

If not specified then the value 'now' will be used.

Page 141

MQEV User Guide – Version 9.4.1

TZ
The bias, in minutes, of the time zone that the FROM and TO parameters are specified in, and any provided
INTVL will also be aligned to this time zone.

When using the PCF interface, this is an MQCFIN parameter with identifier MQC_ATTR_TIMEZONE.

If not specified then the time zone will be assumed to be UTC.

Here are some examples:-

Time zone TZ Value

Auckland, New Zealand TZ(-720)

UTC TZ(0)

Portland, Oregon, USA TZ(480)

If you are using MO71 or MQSCX, you do not need to manually provide this attribute as those tools
automatically include it from known configuration in those tools.

INTVLSTA
This is an integer representation27 of the date and time of the start of the interval.

When using the PCF interface, this is an MQCFIN64 parameter with identifier
MQG_ATTR_START_OF_INTERVAL. This can be both and input and output parameter.

Either use INTVLSTA and INTVLEND, or use FROM and TO. You cannot use both. It is expected that users
will mainly use FROM and TO. INTVLSTA and INTVLEND are designed for programmable interfaces to
input values previously returned on earlier commands..

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

INTVLEND
This is an integer representation27 of the date and time of the end of the interval.

When using the PCF interface, this is an MQCFIN64 parameter with identifier
MQG_ATTR_END_OF_INTERVAL. This can be both and input and output parameter.

Please refer to the description of INTVLSTA for advice on when to use this parameter.

MAXRECS
The number of source records which should be used to construct the response. This prevents inadvertent
consumption of CPU when issuing queries against large amounts of data.

The default value is taken from the EV object which itself has a default value of 1,000,000.

This value can not be larger than 100,000,000.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MAX_RECORDS.

MAXRESP
The number of responses to be returned to this DISPLAY command. The default value is 100.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MAX_RESPONSES.

PREWHERE
Specify a filter condition to only total records that satisfy the selection criterion of the filter condition. For
more about the WHERE clause see Chapter 10 Where Clause() on page 55.

27 The number of seconds since 1st January 1970 – also known as Unix time or Epoch time.

Page 142

MQEV User Guide – Version 9.4.1

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_PREWHERE.

WHERE
Specify a filter condition to only display records that satisfy the selection criterion of the filter condition.
For more about the WHERE clause see Chapter 10 Where Clause() on page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_WHERE.

STATCHL Attributes
The attribute list can specify any of the following values. When using the PCF interface, this is an
MQCFIL parameter with identifier MQG_ATTR_EV_STAT_CHL_ATTRS.

For a description of these fields please read the MQ documentation

MQSC Value PCF Constant PCF Type Description

ALL MQIACF_ALL N/A All attributes

STATCHL MQCACH_CHANNEL_NAME MQCFST Channel Name

CHLTYPE MQIACH_CHANNEL_TYPE MQCFIN Channel Type

CMDLEVEL MQIA_COMMAND_LEVEL MQCFIN IBM MQ Command Level

TITLE MQG_ATTR_TITLE MQCFST Collation Interval Title

TITLEIDX MQG_ATTR_TITLE_INDEX MQCFIN Index of Collation Interval Title

AGGRINT MQG_ATTR_AGGR_INTERVAL MQCFIN Aggregation Interval active at collection time

CONNAME MQCACH_CONNECTION_NAME MQCFST Connection Name

RQMNAME MQCA_REMOTE_Q_MGR_NAME MQCFST Remote Queue Manager Name

MSGS MQG_ACCST_MSGS MQCFIN The number of messages sent and received.

BYTES MQG_ACCST_64_BYTES MQCFIN64 The number of bytes sent and received

NETTIMMIN MQG_ACCST_NET_TIME_MIN MQCFIN The shortest recorded channel round-trip

NETTIMAVG MQG_ACCST_NET_TIME_AVG MQCFIN The average recorded channel round-trip

NETTIMMAX MQG_ACCST_NET_TIME_MAX MQCFIN The longest recorded channel round-trip

EXTTIMMIN MQG_ACCST_EXIT_TIME_MIN MQCFIN The shortest recorded time executing a channel exit

EXTTIMAVG MQG_ACCST_EXIT_TIME_AVG MQCFIN The average recorded time executing a channel exit

EXTTIMMAX MQG_ACCST_EXIT_TIME_MAX MQCFIN The longest recorded time executing a channel exit

FULLBATCH MQG_ACCST_FULL_BATCHES MQCFIN The number of full batches sent in the interval

ICMPBATCH MQG_ACCST_INCOMPLETE_BATCHES MQCFIN The number of incomplete batches sent in the interval

AVGBATCH MQG_ACCST_AVG_BATCHES MQCFIN The average batch size during the interval

PUTRETRIES MQG_ACCST_PUT_RETRIES MQCFIN The number of times a message failed to be put and
entered a retry loop.

RECORDS MQG_ATTR_RECORDS MQCFIN Number of records totalled together

Page 143

https://www.ibm.com/docs/en/ibm-mq/latest?topic=reference-channel-statistics-message-data

MQEV User Guide – Version 9.4.1

13.24 DISPLAY STATMQI
Use the MQSC command DISPLAY STATMQI (or it's equivalent PCF command MQG_CMD_DISPLAY_STAT_MQI)
to display the MQI statistics records processed and stored by MQEV. For a description of the statistics fields
provided by MQ please read the MQ documentation

13.24.1 Syntax diagram for DISPLAY STATMQI

►►─ DISPLAY STATMQI(wildcarded-stream-name) ───┬───────────────────────┬──────────────►
 └─ EVQMGR(qmgr-name) ─┘

 ┌─ GAPFILL(NO) ─────────────┐ ┌─ SUM(STREAM) ───────┐
►───┼─────────────────────────────┼────┼───────────────────────┼────────────────────────►
 └─ GAPFILL(─┬─ INNER ───┬─) ┘ └─ SUM(─┬─ NONE ──┬─) ┘
 ├─ ACTIVITY ┤ └─ TOTAL ─┘
 └─ FULL ────┘

 ┌─ FROM('-24h') ────────┐ ┌─ TO('now') ─────────┐ ┌─ TZ(0) ───────┐
►───┼─────────────────────────┼──┼───────────────────────┼──┼─────────────────┼─────────►
 └─ FROM(date-and-time) ─┘ └─ TO(date-and-time) ─┘ └─ TZ(integer) ─┘

 ┌─ COLLATE(NONE) ──────┐ ┌─ ZEROVALS(HIDE) ─┐
►───┼────────────────────────┼───┼────────────────────┼───┬────────────────────┬───────►
 └─ COLLATE(collation) ─┘ └─ ZEROVALS(SHOW) ─┘ └── TITLE(title) ──┘

 ┌─ INTVLALGN(CLOCK) ─┐
►───┼──────────────────────┼──┬────────────────────────┬────────────────────────────────►
 └─ INTVLALGN(MQ) ────┘ └─ INTVL(time-period) ─┘

►───┬─────────────────────────────────────┬──┬─────────────────────────────────────┬────►
 └─ INTVLSTA(date-and-time-seconds) ─┘ └─ INTVLEND(date-and-time-seconds) ─┘

►───┬────────────────────────────┬───┬───────────────────────────────┬──────────────────►
 └─ WHERE(FilterCondition) ─┘ └─ PREWHERE(FilterCondition) ─┘

 ┌─ MAXRECS(ev-value) ─┐ ┌─ MAXRESP(100) ─────┐
►───┼───────────────────────┼─┼──────────────────────┼──┬────────────────┬──┬───────┬──►◄
 └─ MAXRECS(integer) ─┘ └─ MAXRESP(integer) ─┘ └─┤ attributes ├─┘ └─ ALL ─┘

13.24.2 Parameter descriptions for DISPLAY STATMQI

(wildcarded-stream-name)
The stream name for which statistics records are to be displayed. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_STREAM_NAME.

EVQMGR
The queue manager associated with the records to be displayed.

This parameter is used to specify which queue manager you wish to see data from. If it is not specified,
the output shows records from the queue manager you are connected to.

Page 144

https://www.ibm.com/docs/en/ibm-mq/latest?topic=reference-mqi-statistics-message-data

MQEV User Guide – Version 9.4.1

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_Q_MGR_NAME.

GAPFILL
Whether to add zeroed records where none exist to produce a set of records that will graph appropriately.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_GAP_FILL.

Possible Values are:-

NO
Do not fill in the gaps with zeroed records.
The PCF value for this is MQG_GAPFILL_NO.

INNER
Produce zeroed records for inner gaps in the set of records.
The PCF value for this is MQG_GAPFILL_INNER.

ACTIVITY
Add zeroed records to produce a set of records that spans the time period where there is any
activity on this queue, not just the activity shown by the attributes displayed.
The PCF value for this is MQG_GAPFILL_ACTIVITY.

FULL
Add zeroed records to produce a set of records that spans the entire time period requested.
The PCF value for this is MQG_GAPFILL_FULL

SUM
Whether the records are summed together, and if so how they are totalled.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_SUM.

Possible Values are:-

NONE
Do not add together any records. The command returns each individual record as reported by IBM
MQ.
The PCF value for this is MQG_SUM_NONE.

STREAM
A record will be returned for each MQEV stream. This is the default value.
The PCF value for this is MQG_SUM_STREAM.

TOTAL
Add together all of the records that match the other criteria (e.g. WHERE clause) on the display
command. If used without the INTVL attribute, this will result in only a single record being
returned. If used with the INTVL attribute, one record will be returned for each interval. The queue
name reported on the returned record will reflect the fact that the numbers for many queue names
might have been added together.
Using SUM(TOTAL) may be very useful when treating multiple queue names as the same name for
the purposes of monitoring or charge-back. For example, a set of dynamic queues that all have
similar names, could be totalled as if they were a single queue.
The PCF value for this is MQG_SUM_TOTAL.

COLLATE
Controls whether the responses should be collated into time intervals. Collation can be useful to display
the 'pattern' of the records rather than just looking at the raw data. For more information about collation
please see Chapter:7 Collation described on page 44.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_COLLATE.

Page 145

MQEV User Guide – Version 9.4.1

ZEROVALS
How to handle zero values in the records displayed.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_ZERO_VALUES.

Possible Values are:-

HIDE
Do not show any zero values. This is the default value.
The PCF value for this is MQG_ZEROVALS_HIDE.

SHOW
Show zero values in records.
The PCF value for this is MQG_ZEROVALS_SHOW.

TITLE
This is an optional wild-carded parameter, used when collation is active, which allows the user to select
which records should be returned from the command.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_TITLE. The
maximum length of this string is MQG_TITLE_LENGTH (20).

INTVLALGN
How to align the reported intervals of records. This parameter is only used when an INTVL is set.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_INTERVAL_ALIGN.

CLOCK
Reported intervals are aligned to the clock. That is, if you request an INTVL(4hour), reported
intervals will be at midnight, 4am, 8am, noon and so on. This is the default value.
The PCF value for this is MQG_ALIGN_CLOCK.

MQ
Reported intervals are aligned to the intervals reported by IBM MQ.
The PCF value for this is MQG_ALIGN_MQ.

INTVL
When summing records, the reported records are totalled in intervals of the specified length. See
INTVLALGN for details of the time alignment of these intervals. This parameter is only valid when you are
not using SUM(NONE). The maximum length of this string is MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_INTERVAL.

The interval supplied must be a multiple of the interval used in IBM MQ to collect the statistics in the
first instance, that is the STATINT value. If you are collecting statistics records every 2 hours, you cannot
request that MQEV display records summed into intervals of 45 minutes.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Many different parameter formats are supported to provide an interval. The following are supported:

Values Meaning

2day (or 2d) Two days

4hour (or 4hr or 4h) Four hours

3minute (or 3min or 3m) Three minutes

1d4h Values can be combined without spaces

Page 146

MQEV User Guide – Version 9.4.1

TO
The time up to when records should be returned. The maximum length of this string is
MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_TO.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Please see the description of the FROM parameter for the allowed values.

If not specified then the value 'now' will be used.

FROM
The time from which records should be returned. The maximum length of this string is
MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_FROM.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Many different parameter formats are supported, the time can be specified in either absolute or relative
terms.

If not specified then the value '-24hour' will be used.

The following are supported:

Absolute values Meaning

now The current time

8 Eight AM

8.30 Eight thirty AM

8.31.46 or 8:31:46 Eight thirty-one and 46 seconds

04-12 12th April (this year)
The day and month fields must always be two digits

2018-10-18 18th October 2018
The year field must always be four digits

2018-10-18 8.31.46 or
2018-10-18 8:31:46

An explicit date and time

Relative values Relative to 'the other' time parameter
Note that both times can not be relative

-2day (or -2d) Two days before

+1d One day after

-4hour (or -4hr or -4h) Four hours before

-3minute (or -3min or -3m) Three minutes before

-10second (-10 sec or -10s or -10) Ten seconds before

-1d4h3m6s Values can be combined without spaces

TZ
The bias, in minutes, of the time zone that the FROM and TO parameters are specified in, and any provided
INTVL will also be aligned to this time zone.

When using the PCF interface, this is an MQCFIN parameter with identifier MQC_ATTR_TIMEZONE.

Page 147

MQEV User Guide – Version 9.4.1

If not specified then the time zone will be assumed to be UTC.

Here are some examples:-

Time zone TZ Value

Auckland, New Zealand TZ(-720)

UTC TZ(0)

Portland, Oregon, USA TZ(480)

If you are using MO71 or MQSCX, you do not need to manually provide this attribute as those tools
automatically include it from known configuration in those tools.

INTVLSTA
This is an integer representation28 of the date and time of the start of the interval.

When using the PCF interface, this is an MQCFIN64 parameter with identifier
MQG_ATTR_START_OF_INTERVAL. This can be both and input and output parameter.

Either use INTVLSTA and INTVLEND, or use FROM and TO. You cannot use both. It is expected that users
will mainly use FROM and TO. INTVLSTA and INTVLEND are designed for programmable interfaces to
input values previously returned on earlier commands..

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

INTVLEND
This is an integer representation28 of the date and time of the end of the interval.

When using the PCF interface, this is an MQCFIN64 parameter with identifier
MQG_ATTR_END_OF_INTERVAL. This can be both and input and output parameter.

Please refer to the description of INTVLSTA for advice on when to use this parameter.

MAXRECS
The number of source records which should be used to construct the response. This prevents inadvertent
consumption of CPU when issuing queries against large amounts of data.

The default value is taken from the EV object which itself has a default value of 1,000,000.

This value can not be larger than 100,000,000.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MAX_RECORDS.

MAXRESP
The number of responses to be returned to this DISPLAY command. The default value is 100.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MAX_RESPONSES.

PREWHERE
Specify a filter condition to only total records that satisfy the selection criterion of the filter condition. For
more about the WHERE clause see Chapter 10 Where Clause() on page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_PREWHERE.

WHERE
Specify a filter condition to only display records that satisfy the selection criterion of the filter condition.
For more about the WHERE clause see Chapter 10 Where Clause() on page 55.

28 The number of seconds since 1st January 1970 – also known as Unix time or Epoch time.

Page 148

MQEV User Guide – Version 9.4.1

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_WHERE.

STATMQI Attributes
The attribute list can specify any of the following values. When using the PCF interface, this is an
MQCFIL parameter with identifier MQG_ATTR_EV_STAT_MQI_ATTRS.

Those highlighted are constructed attributes for your convenience and are not stored in the statistics
message. For this reason they are not available in the MQEVStatMQI function.

For a description of these fields please read the MQ documentation

MQSC Value PCF Constant PCF Type Description

ALL MQIACF_ALL N/A All attributes

STATMQI MQG_ATTR_STREAM_NAME MQCFST Stream Name

CMDLEVEL MQIA_COMMAND_LEVEL MQCFIN IBM MQ Command Level

TTILE MQG_ATTR_TITLE MQCFST Collation Interval Title

TTILEIDX MQG_ATTR_TITLE_INDEX MQCFIN Index of Collation Interval Title

AGGRINT MQG_ATTR_AGGR_INTERVAL MQCFIN Aggregation Interval active at collection time

CONNS MQG_ACCST_CONNECTIONS MQCFIN Number of success connections in the interval

CONNSFAIL MQG_ACCST_CONNECTIONS_FAILED MQCFIN Number of failed connections in the interval

CONNSMAX MQG_ACCST_CONNECTIONS_MAX MQCFIN Maximum number of concurrent connections

DISCSNORM MQG_ACCST_DISC_NORMAL MQCFIN Number of normal disconnects

DISCSIMPL MQG_ACCST_DISC_IMPLICIT MQCFIN Number of implicit disconnects

DISCSQMGR MQG_ACCST_DISC_Q_MGR MQCFIN Number of Queue Manager disconnects

OPENQ MQG_ACCST_OPEN_QUEUE MQCFIN Open Queue count

OPENNL MQG_ACCST_OPEN_NAMELIST MQCFIN Open Namelist count

OPENPR MQG_ACCST_OPEN_PROCESS MQCFIN Open Process count

OPENQM MQG_ACCST_OPEN_Q_MGR MQCFIN Open QMgr count

OPENTP MQG_ACCST_OPEN_TOPIC MQCFIN Open Topic count

OPENQFL MQG_ACCST_OPEN_FAIL_QUEUE MQCFIN Open Queue fail count

OPENNLFL MQG_ACCST_OPEN_FAIL_NAMELIST MQCFIN Open Namelist fail count

OPENPRFL MQG_ACCST_OPEN_FAIL_PROCESS MQCFIN Open Process fail count

OPENQMFL MQG_ACCST_OPEN_FAIL_Q_MGR MQCFIN Open QMgr fail count

OPENTPFL MQG_ACCST_OPEN_FAIL_TOPIC MQCFIN Open Topic fail count

CLOSEQ MQG_ACCST_CLOSE_QUEUE MQCFIN Close Queue count

CLOSENL MQG_ACCST_CLOSE_NAMELIST MQCFIN Close Namelist count

CLOSEPR MQG_ACCST_CLOSE_PROCESS MQCFIN Close Process count

CLOSEQM MQG_ACCST_CLOSE_Q_MGR MQCFIN Close QMgr count

CLOSETP MQG_ACCST_CLOSE_TOPIC MQCFIN Close Topic count

Page 149

https://www.ibm.com/docs/en/ibm-mq/latest?topic=reference-mqi-statistics-message-data

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

CLOSEQFL MQG_ACCST_CLOSE_FAIL_QUEUE MQCFIN Close Queue fail count

CLOSENLFL MQG_ACCST_CLOSE_FAIL_NAMELIST MQCFIN Close Namelist fail count

CLOSEPRFL MQG_ACCST_CLOSE_FAIL_PROCESS MQCFIN Close Process fail count

CLOSEQMFL MQG_ACCST_CLOSE_FAIL_Q_MGR MQCFIN Close QMgr fail count

CLOSETPFL MQG_ACCST_CLOSE_FAIL_TOPIC MQCFIN Close Topic fail count

INQQ MQG_ACCST_INQ_QUEUE MQCFIN Inquire Queue count

INQNL MQG_ACCST_INQ_NAMELIST MQCFIN Inquire Namelist count

INQPR MQG_ACCST_INQ_PROCESS MQCFIN Inquire Process count

INQQM MQG_ACCST_INQ_Q_MGR MQCFIN Inquire QMgr count

INQQFL MQG_ACCST_INQ_FAIL_QUEUE MQCFIN Inquire Queue fail count

INQNLFL MQG_ACCST_INQ_FAIL_NAMELIST MQCFIN Inquire Namelist fail count

INQPRFL MQG_ACCST_INQ_FAIL_PROCESS MQCFIN Inquire Process fail count

INQQMFL MQG_ACCST_INQ_FAIL_Q_MGR MQCFIN Inquire QMgr fail count

SETQ MQG_ACCST_SET_QUEUE MQCFIN Set Queue count

SETQFL MQG_ACCST_SET_FAIL_QUEUE MQCFIN Set Queue fail count

ALLPUT MQG_ACCST_ALL_PUTS MQCFIN All Puts
Constructed from sum of PUT and PUT1

PUT MQG_ACCST_PUTS MQCFIN Puts
Constructed from sum of PUTNP and PUTP

PUTNP MQG_ACCST_PUTS_NP MQCFIN Puts (Non-persistent)

PUTP MQG_ACCST_PUTS_P MQCFIN Puts (Persistent)

PUTFAIL MQG_ACCST_PUTS_FAILED MQCFIN Puts Failed

PUT1 MQG_ACCST_PUT1S MQCFIN Put1s
Constructed from sum of PUT1NP and PUT1P

PUT1NP MQG_ACCST_PUT1S_NP MQCFIN Put1s (Non-persistent)

PUT1P MQG_ACCST_PUT1S_P MQCFIN Put1s (Persistent)

PUT1FAIL MQG_ACCST_PUT1S_FAILED MQCFIN Put1s Failed

PUTBYTE MQG_ACCST_64_PUT_BYTES MQCFIN64 Put Bytes
Constructed from sum of PUTBYTENP and
PUTBYTEP

PUTBYTENP MQG_ACCST_64_PUT_BYTES_NP MQCFIN64 Put Bytes (Non-persistent)

PUTBYTEP MQG_ACCST_64_PUT_BYTES_P MQCFIN64 Put Bytes(Persistent)

GET MQG_ACCST_GETS MQCFIN Gets
Constructed from sum of GETNP and GETP

GETNP MQG_ACCST_GETS_NP MQCFIN Gets (Non-persistent)

GETP MQG_ACCST_GETS_P MQCFIN Gets (Persistent)

GETFAIL MQG_ACCST_GETS_FAILED MQCFIN Gets Failed

Page 150

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

GETBYTE MQG_ACCST_64_GET_BYTES MQCFIN64 Get Bytes
Constructed from sum of GETBYTENP and
GETBYTEP

GETBYTENP MQG_ACCST_64_GET_BYTES_NP MQCFIN64 Get Bytes (Non-persistent)

GETBYTEP MQG_ACCST_64_GET_BYTES_P MQCFIN64 Get Bytes(Persistent)

BRS MQG_ACCST_BROWSES MQCFIN Browses
Constructed from sum of BRSNP and BRSP

BRSNP MQG_ACCST_BROWSES_NP MQCFIN Browses (Non-persistent)

BRSP MQG_ACCST_BROWSES_P MQCFIN Browses (Persistent)

BRSFAIL MQG_ACCST_BROWSES_FAILED MQCFIN Browses Failed

BRSBYTE MQG_ACCST_64_BROWSE_BYTES MQCFIN64 Browses Bytes
Constructed from sum of BRSBYTENP and
BRSBYTEP

BRSBYTENP MQG_ACCST_64_BROWSE_BYTES_NP MQCFIN64 Browses Bytes (Non-persistent)

BRSBYTEP MQG_ACCST_64_BROWSE_BYTES_P MQCFIN64 Browses Bytes(Persistent)

COMMIT MQG_ACCST_COMMIT MQCFIN Commit count

COMMITFL MQG_ACCST_COMMIT_FAIL MQCFIN Commit fail count

BACKOUT MQG_ACCST_BACKOUT MQCFIN Backout count

EXPIRED MQG_ACCST_MSGS_EXPIRED MQCFIN Number of messages discarded due to expiry

PURGED MQG_ACCST_MSGS_PURGED MQCFIN Number of times the queue has been cleared

SUBDURCR MQG_ACCST_SUB_DUR_CREATED MQCFIN Number of durable subscriptions created

SUBDURAL MQG_ACCST_SUB_DUR_ALTERED MQCFIN Number of durable subscriptions altered

SUBDURRS MQG_ACCST_SUB_DUR_RESUMED MQCFIN Number of durable subscriptions resumed

SUBNDURCR MQG_ACCST_SUB_NONDUR_CREATED MQCFIN Number of non-durable subscriptions created

SUBNDURAL MQG_ACCST_SUB_NONDUR_ALTERED MQCFIN Number of non-durable subscriptions altered

SUBNDURRS MQG_ACCST_SUB_NONDUR_RESUMED MQCFIN Number of non-durable subscriptions resumed

SUBFL MQG_ACCST_SUB_FAIL MQCFIN Subscription fail count

UNSUBDCLS MQG_ACCST_UNSUB_DUR_CLOSED MQCFIN Number of durable unsubscribe closes

UNSUBDREM MQG_ACCST_UNSUB_DUR_REMOVED MQCFIN Number of durable unsubscribe removes

UNSUBNCLS MQG_ACCST_UNSUB_NONDUR_CLOSED MQCFIN Number of non-durable unsubscribe closes

UNSUBNREM MQG_ACCST_UNSUB_NONDUR_REMOVED MQCFIN Number of non-durable unsubscribe removes

UNSUBFL MQG_ACCST_UNSUB_FAIL MQCFIN Unsubscribe fail count

SUBRQ MQG_ACCST_SUBRQ MQCFIN Number of successful MQSUBRQ requests

SUBRQFL MQG_ACCST_SUBRQ_FAIL MQCFIN Number of unsuccessful MQSUBRQ requests

CBS MQG_ACCST_CBS MQCFIN MQCB calls
Constructed from sum of CBCREATE, CBREMOVE,
CBRESUME, and CBSUSPEND.

Page 151

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

CBCREATE MQG_ACCST_CBS_CREATED MQCFIN MQCB calls using MQOP_REGISTER

CBREMOVE MQG_ACCST_CBS_REMOVED MQCFIN MQCB calls using MQOP_DEREGISTER

CBRESUME MQG_ACCST_CBS_RESUMED MQCFIN MQCB calls using MQOP_RESUME

CBSUSPEND MQG_ACCST_CBS_SUSPENDED MQCFIN MQCB calls using MQOP_SUSPEND

CBFAIL MQG_ACCST_CBS_FAILED MQCFIN MQCB calls failed

CTLSTA MQG_ACCST_CTL_STARTED MQCFIN MQCTL calls using MQOP_START*

CTLSTP MQG_ACCST_CTL_STOPPED MQCFIN MQCTL calls using MQOP_STOP

CTLRES MQG_ACCST_CTL_RESUMED MQCFIN MQCTL calls using MQOP_RESUME

CTLSUS MQG_ACCST_CTL_SUSPENDED MQCFIN MQCTL calls using MQOP_SUSPEND

CTLFL MQG_ACCST_CTL_FAIL MQCFIN MQCTL calls failed

STAT MQG_ACCST_STAT MQCFIN MQSTAT count

STATFL MQG_ACCST_STAT_FAIL MQCFIN MQSTAT fail count

SUBDHWALL MQG_ACCST_SUB_DUR_HIGHWATER_ALL MQCFIN High-water mark on number of durable
subscriptions

SUBDHWAPI MQG_ACCST_SUB_DUR_HIGHWATER_API MQCFIN High-water mark on number of durable API
subscriptions

SUBDHWADM MQG_ACCST_SUB_DUR_HIGHWATER_ADMIN MQCFIN High-water mark on number of durable Admin
subscriptions

SUBDHWPRX MQG_ACCST_SUB_DUR_HIGHWATER_PROXY MQCFIN High-water mark on number of durable Proxy
subscriptions

SUBDLWALL MQG_ACCST_SUB_DUR_LOWWATER_ALL MQCFIN Low-water mark on number of durable
subscriptions

SUBDLWAPI MQG_ACCST_SUB_DUR_LOWWATER_API MQCFIN Low-water mark on number of durable API
subscriptions

SUBDLWADM MQG_ACCST_SUB_DUR_LOWWATER_ADMIN MQCFIN Low-water mark on number of durable Admin
subscriptions

SUBDLWPRX MQG_ACCST_SUB_DUR_LOWWATER_PROXY MQCFIN Low-water mark on number of durable Proxy
subscriptions

SUBNHWALL MQG_ACCST_SUB_NDUR_HIGHWATER_ALL MQCFIN High-water mark on number of non-durable
subscriptions

SUBNHWAPI MQG_ACCST_SUB_NDUR_HIGHWATER_API MQCFIN High-water mark on number of non-durable API
subscriptions

SUBNHWADM MQG_ACCST_SUB_NDUR_HIGHWATER_ADMIN MQCFIN High-water mark on number of non-durable
Admin subscriptions

SUBNHWPRX MQG_ACCST_SUB_NDUR_HIGHWATER_PROXY MQCFIN High-water mark on number of non-durable Proxy
subscriptions

SUBNLWALL MQG_ACCST_SUB_NDUR_LOWWATER_ALL MQCFIN Low-water mark on number of non-durable
subscriptions

SUBNLWAPI MQG_ACCST_SUB_NDUR_LOWWATER_API MQCFIN Low-water mark on number of non-durable API

Page 152

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

subscriptions

SUBNLWADM MQG_ACCST_SUB_NDUR_LOWWATER_ADMIN MQCFIN Low-water mark on number of non-durable Admin
subscriptions

SUBNLWPRX MQG_ACCST_SUB_NDUR_LOWWATER_PROXY MQCFIN Low-water mark on number of non-durable Proxy
subscriptions

PUTTOP MQG_ACCST_PUT_TOPIC MQCFIN Number of messages put to a topic

Constructed from sum of PUTTOPNP and PUTTOPP

PUTTOPNP MQG_ACCST_PUT_TOPIC_NP MQCFIN Number of non-persistent messages put to a topic

PUTTOPP MQG_ACCST_PUT_TOPIC_P MQCFIN Number of persistent messages put to a topic

PUTTOPFL MQG_ACCST_PUT_TOPIC_FAIL MQCFIN Number of failed puts to a topic

PUT1TOP MQG_ACCST_PUT1_TOPIC MQCFIN Number of messages put1 to a topic

Constructed from sum of PUT1TOPNP and
PUT1TOPP

PUT1TOPNP MQG_ACCST_PUT1_TOPIC_NP MQCFIN Number of non-persistent messages put1 to a topic

PUT1TOPP MQG_ACCST_PUT1_TOPIC_P MQCFIN Number of persistent messages put1 to a topic

PUT1TOPFL MQG_ACCST_PUT1_TOPIC_FAIL MQCFIN Number of failed put1s to a topic

PUTTOPBYTE MQG_ACCST_64_PUT_TOPIC_BYTES MQCFIN64 Number of bytes put to a topic

Constructed from sum of PUTTOPBYTENP and
PUTTOPBYTEP

PUTTOPBYTENP MQG_ACCST_64_PUT_TOPIC_BYTES_NP MQCFIN64 Number of non-persistent bytes put to a topic

PUTTOPBYTEP MQG_ACCST_64_PUT_TOPIC_BYTES_P MQCFIN64 Number of persistent bytes put to a topic

PUBMSG MQG_ACCST_PUBLISH_MSG MQCFIN Number of messages delivered to subscribers

Constructed from sum of PUBMSGNP and PUTMSGP

PUBMSGNP MQG_ACCST_PUBLISH_MSG_NP MQCFIN Number of non-persistent messages delivered to
subscribers

PUBMSGP MQG_ACCST_PUBLISH_MSG_P MQCFIN Number of persistent messages delivered to
subscribers

PUBMSGBYTE MQG_ACCST_64_PUBLISH_MSG_BYTES MQCFIN64 Number of bytes delivered to subscribers

Constructed from sum of PUBMSGBYTENP and
PUTMSGBYTEP

PUBMSGBYTENP MQG_ACCST_64_PUBLISH_MSG_BYTES_NP MQCFIN64 Number of non-persistent bytes delivered to
subscribers

PUBMSGBYTEP MQG_ACCST_64_PUBLISH_MSG_BYTES_P MQCFIN64 Number of persistent bytes delivered to
subscribers

RECORDS MQG_ATTR_RECORDS MQCFIN Number of records totalled together

Page 153

MQEV User Guide – Version 9.4.1

13.25 DISPLAY STATQ
Use the MQSC command DISPLAY STATQ (or it's equivalent PCF command MQG_CMD_DISPLAY_STAT_Q) to
display the queue statistics records processed and stored by MQEV. For a description of the statistics fields
provided by MQ please read the MQ documentation

13.25.1 Syntax diagram for DISPLAY STATQ

►►─ DISPLAY STATQ(wildcarded-queue-name) ─┬───────────────────────┬───────────────────►
 └─ EVQMGR(qmgr-name) ─┘

 ┌─ GAPFILL(NO) ───────────────┐ ┌─ SUM(QUEUE) ─────────────┐
►───┼───────────────────────────────┼────┼────────────────────────────┼────────────────►
 └─ GAPFILL(─┬─ INNER ────┬─) ─┘ ├─ SUM(─┬─ NONE ─────┬──) ─┤
 ├─ ACTIVITY ─┤ │ └─ TOTAL ────┘ │
 └─ FULL ─────┘ │ ┌─,────────────┐ │
 │ ↓ │ │
 └─ SUM(─┬─ QUEUE ────┬┴─) ─┘
 ├─ PREFIX ───┤
 ├─ PREFIX2 ──┤
 ├─ SUFFIX ───┤
 └─ STREAM ───┘

 ┌─ FROM('-24h') ────────┐ ┌─ TO('now') ─────────┐ ┌─ TZ(0) ───────┐
►───┼─────────────────────────┼──┼───────────────────────┼──┼─────────────────┼─────────►
 └─ FROM(date-and-time) ─┘ └─ TO(date-and-time) ─┘ └─ TZ(integer) ─┘

 ┌─ COLLATE(NONE) ──────┐ ┌─ ZEROVALS(HIDE) ─┐
►───┼────────────────────────┼───┼────────────────────┼───┬────────────────────┬────────►
 └─ COLLATE(collation) ─┘ └─ ZEROVALS(SHOW) ─┘ └── TITLE(title) ──┘

 ┌─ INTVLALGN(CLOCK) ─┐
►───┼──────────────────────┼──┬────────────────────────┬────────────────────────────────►
 └─ INTVLALGN(MQ) ────┘ └─ INTVL(time-period) ─┘

►───┬─────────────────────────────────────┬──┬─────────────────────────────────────┬────►
 └─ INTVLSTA(date-and-time-seconds) ─┘ └─ INTVLEND(date-and-time-seconds) ─┘

►───┬────────────────────────────┬───┬───────────────────────────────┬──────────────────►
 └─ WHERE(FilterCondition) ─┘ └─ PREWHERE(FilterCondition) ─┘

 ┌─ MAXRECS(ev-value) ─┐ ┌─ MAXRESP(100) ─────┐
►───┼───────────────────────┼─┼──────────────────────┼──┬────────────────┬──┬───────┬──►◄
 └─ MAXRECS(integer) ─┘ └─ MAXRESP(integer) ─┘ └─┤ attributes ├─┘ └─ ALL ─┘

13.25.2 Parameter descriptions for DISPLAY STATQ

(wildcarded-queue-name)
The queue name for which statistics records are to be displayed. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier MQCA_Q_NAME.

Page 154

https://www.ibm.com/docs/en/ibm-mq/latest?topic=reference-queue-statistics-message-data

MQEV User Guide – Version 9.4.1

EVQMGR
The queue manager associated with the records to be displayed.

This parameter is used to specify which queue manager you wish to see data from. If it is not specified,
the output shows records from the queue manager you are connected to.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_Q_MGR_NAME.

GAPFILL
Whether to add zeroed records where none exist to produce a set of records that will graph appropriately.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_GAP_FILL.

Possible Values are:-

NO
Do not fill in the gaps with zeroed records.
The PCF value for this is MQG_GAPFILL_NO.

INNER
Produce zeroed records for inner gaps in the set of records.
The PCF value for this is MQG_GAPFILL_INNER.

ACTIVITY
Add zeroed records to produce a set of records that spans the time period where there is any
activity on this queue, not just the activity shown by the attributes displayed.
The PCF value for this is MQG_GAPFILL_ACTIVITY.

FULL
Add zeroed records to produce a set of records that spans the entire time period requested.
The PCF value for this is MQG_GAPFILL_FULL

SUM
Whether the records are summed together, and if so how they are totalled. Multiple values can be
provided in a comma-separated list, except where indicated that a value cannot be combined with any
others.

When multiple values are provided, a record will be returned for each unique combination, e.g.
SUM(QUEUE, STREAM) will return one record for each unique combination of queue name and stream
name.

When using the PCF interface, this can be an MQCFIN parameter (should you only need to supply one
value) or an MQCFIL parameter (should you need to supply multiple values) with identifier
MQG_ATTR_SUM.

When any of the SUM values apart from NONE and TOTAL are used without the INTVL attribute, this will
result in a single record per unique key combination being returned. If used with the INTVL attribute, one
record per application will be returned for each interval.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Possible Values are:-

NONE
Do not add together any records. The command returns each individual record as reported by IBM
MQ. This value cannot be combined with any others.
The PCF value for this is MQG_SUM_NONE.

Page 155

MQEV User Guide – Version 9.4.1

QUEUE29

Add together records that have the same queue name. If used without the INTVL attribute, this will
result in a single record per queue being returned. If used with the INTVL attribute, one record per
queue will be returned for each interval. This is the default value.
The PCF value for this is MQG_SUM_QUEUE.

PREFIX29

A record will be returned for each unique first portion of the queue name.
For example queues A.TST and A.PRD will be summed together
The PCF value for this is MQG_SUM_PREFIX.

PREFIX229

A record will be returned for each unique second portion of queue name.
For example queues A.MQGEM.TST and A.MQGEM.PRD will be summed together
The PCF value for this is MQG_SUM_PREFIX2.

SUFFIX29

A record will be returned for each unique last portion of queue name.
For example queues A.TST and B.TXT will be summed together
The PCF value for this is MQG_SUM_SUFFIX.

STREAM
A record will be returned for each MQEV stream
The PCF value for this is MQG_SUM_STREAM.

TOTAL
Add together all of the records that match the other criteria (e.g. WHERE clause) on the display
command. If used without the INTVL attribute, this will result in only a single record being
returned. If used with the INTVL attribute, one record will be returned for each interval. The queue
name reported on the returned record will reflect the fact that the numbers for many queue names
might have been added together.
Using SUM(TOTAL) may be very useful when treating multiple queue names as the same name for
the purposes of monitoring or charge-back. For example, a set of dynamic queues that all have
similar names, could be totalled as if they were a single queue.
This value cannot be combined with any others.
The PCF value for this is MQG_SUM_TOTAL.

COLLATE
Controls whether the responses should be collated into time intervals. Collation can be useful to display
the 'pattern' of the records rather than just looking at the raw data. For more information about collation
please see Chapter:7 Collation described on page 44.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_COLLATE.

ZEROVALS
How to handle zero values in the records displayed.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_ZERO_VALUES.

Possible Values are:-

HIDE
Do not show any zero values. This is the default value.
The PCF value for this is MQG_ZEROVALS_HIDE.

29 Note that at most one of QUEUE, PREFIX, PREFIX2 and SUFFIX can be specified

Page 156

MQEV User Guide – Version 9.4.1

SHOW
Show zero values in records.
The PCF value for this is MQG_ZEROVALS_SHOW.

TITLE
This is an optional wild-carded parameter, used when collation is active, which allows the user to select
which records should be returned from the command.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_TITLE. The
maximum length of this string is MQG_TITLE_LENGTH (20).

INTVLALGN
How to align the reported intervals of records. This parameter is only used when an INTVL is set.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_INTERVAL_ALIGN.

CLOCK
Reported intervals are aligned to the clock. That is, if you request an INTVL(4hour), reported
intervals will be at midnight, 4am, 8am, noon and so on. This is the default value.
The PCF value for this is MQG_ALIGN_CLOCK.

MQ
Reported intervals are aligned to the intervals reported by IBM MQ.
The PCF value for this is MQG_ALIGN_MQ.

INTVL
When summing records, the reported records are totalled in intervals of the specified length. See
INTVLALGN for details of the time alignment of these intervals. This parameter is only valid when you are
not using SUM(NONE). The maximum length of this string is MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_INTERVAL.

The interval supplied must be a multiple of the interval used in IBM MQ to collect the statistics in the
first instance, that is the STATINT value. If you are collecting statistics records every 2 hours, you cannot
request that MQEV display records summed into intervals of 45 minutes.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Many different parameter formats are supported to provide an interval. The following are supported:

Values Meaning

2day (or 2d) Two days

4hour (or 4hr or 4h) Four hours

3minute (or 3min or 3m) Three minutes

1d4h Values can be combined without spaces

FROM
The time from which records should be returned. The maximum length of this string is
MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_FROM.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Page 157

MQEV User Guide – Version 9.4.1

Many different parameter formats are supported, the time can be specified in either absolute or relative
terms. The following are supported:

Absolute values Meaning

now The current time

8 Eight AM

8.30 Eight thirty AM

8.31.46 or 8:31:46 Eight thirty-one and 46 seconds

04-12 12th April (this year)
The day and month fields must always be two digits

2018-10-18 18th October 2018
The year field must always be four digits

2018-10-18 8.31.46
2018-10-18 8:31:46

An explicit date and time

Relative values Relative to 'the other' time parameter
Note that both times can not be relative

-2day (or -2d) Two days before

+1d One day after

-4hour (or -4hr or -4h) Four hours before

-3minute (or -3min or -3m) Three minutes before

-10second (-10 sec or -10s or -10) Ten seconds before

-1d4h3m6s Values can be combined without spaces

If not specified then the value '-24hour' will be used.

TO
The time up to when records should be returned. The maximum length of this string is
MQG_DATE_TIME_LENGTH (30).

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_TO.

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

Please see the description of the FROM parameter for the allowed values.

If not specified then the value 'now' will be used.

TZ
The bias, in minutes, of the time zone that the FROM and TO parameters are specified in, and any provided
INTVL will also be aligned to this time zone.

When using the PCF interface, this is an MQCFIN parameter with identifier MQC_ATTR_TIMEZONE.

If not specified then the time zone will be assumed to be UTC.

Here are some examples:-

Time zone TZ Value

Auckland, New Zealand TZ(-720)

UTC TZ(0)

Portland, Oregon, USA TZ(480)

Page 158

MQEV User Guide – Version 9.4.1

If you are using MO71 or MQSCX, you do not need to manually provide this attribute as those tools
automatically include it from known configuration in those tools.

INTVLSTA
This is an integer representation30 of the date and time of the start of the interval.

When using the PCF interface, this is an MQCFIN64 parameter with identifier
MQG_ATTR_START_OF_INTERVAL. This can be both and input and output parameter.

Either use INTVLSTA and INTVLEND, or use FROM and TO. You cannot use both. It is expected that users
will mainly use FROM and TO. INTVLSTA and INTVLEND are designed for programmable interfaces to
input values previously returned on earlier commands..

For more information about the returned records and their interval start and end times, please see
Chapter 12 Returned Interval Times on page 61.

INTVLEND
This is an integer representation30 of the date and time of the end of the interval.

When using the PCF interface, this is an MQCFIN64 parameter with identifier
MQG_ATTR_END_OF_INTERVAL. This can be both and input and output parameter.

Please refer to the description of INTVLSTA for advice on when to use this parameter.

MAXRECS
The number of source records which should be used to construct the response. This prevents inadvertent
consumption of CPU when issuing queries against large amounts of data.

The default value is taken from the EV object which itself has a default value of 1,000,000.

This value can not be larger than 100,000,000.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MAX_RECORDS.

MAXRESP
The number of responses to be returned to this DISPLAY command. The default value is 100.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_MAX_RESPONSES.

PREWHERE
Specify a filter condition to only total records that satisfy the selection criterion of the filter condition. For
more about the WHERE clause see Chapter 10 Where Clause() on page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_PREWHERE.

WHERE
Specify a filter condition to only display records that satisfy the selection criterion of the filter condition.
For more about the WHERE clause see Chapter 10 Where Clause() on page 55.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_WHERE.

STATQ Attributes
The attribute list can specify any of the following values. When using the PCF interface, this is an
MQCFIL parameter with identifier MQG_ATTR_EV_STAT_Q_ATTRS.

Those highlighted are constructed attributes for your convenience and are not stored in the statistics
message. For this reason they are not available in the MQEVStatQ function.

30 The number of seconds since 1st January 1970 – also known as Unix time or Epoch time.

Page 159

MQEV User Guide – Version 9.4.1

For a description of these fields please read the MQ documentation

MQSC Value PCF Constant PCF Type Description

ALL MQIACF_ALL N/A All attributes

INTVLS MQG_ATTR_INTERVALS MQCFIN Intervals

CMDLEVEL MQIA_COMMAND_LEVEL MQCFIN IBM MQ Command Level

TITLE MQG_ATTR_TITLE MQCFST Collation Interval Title

TITLEIDX MQG_ATTR_TITLE_INDEX MQCFIN Index of Collation Interval Title

AGGRINT MQG_ATTR_AGGR_INTERVAL MQCFIN Aggregation Interval active at collection time

ALLPUT MQG_ACCST_ALL_PUTS MQCFIN All Puts
Constructed from sum of PUT and PUT1

PUT MQG_ACCST_PUTS MQCFIN Puts
Constructed from sum of PUTNP and PUTP

PUTNP MQG_ACCST_PUTS_NP MQCFIN Puts (Non-persistent)

PUTP MQG_ACCST_PUTS_P MQCFIN Puts (Persistent)

PUTBYTE MQG_ACCST_64_PUT_BYTES MQCFIN64 Put Bytes
Constructed from sum of PUTBYTENP and PUTBYTEP

PUTBYTENP MQG_ACCST_64_PUT_BYTES_NP MQCFIN64 Put Bytes (Non-persistent)

PUTBYTEP MQG_ACCST_64_PUT_BYTES_P MQCFIN64 Put Bytes(Persistent)

PUTFAIL MQG_ACCST_PUTS_FAILED MQCFIN Puts Failed

PUT1 MQG_ACCST_PUT1S MQCFIN Put1s
Constructed from sum of PUT1NP and PUT1P

PUT1NP MQG_ACCST_PUT1S_NP MQCFIN Put1s (Non-persistent)

PUT1P MQG_ACCST_PUT1S_P MQCFIN Put1s (Persistent)

PUT1FAIL MQG_ACCST_PUT1S_FAILED MQCFIN Put1s Failed

GET MQG_ACCST_GETS MQCFIN Gets
Constructed from sum of GETNP and GETP

GETNP MQG_ACCST_GETS_NP MQCFIN Gets (Non-persistent)

GETP MQG_ACCST_GETS_P MQCFIN Gets (Persistent)

GETFAIL MQG_ACCST_GETS_FAILED MQCFIN Gets Failed

GETBYTE MQG_ACCST_64_GET_BYTES MQCFIN64 Get Bytes
Constructed from sum of GETBYTENP and GETBYTEP

GETBYTENP MQG_ACCST_64_GET_BYTES_NP MQCFIN64 Get Bytes (Non-persistent)

GETBYTEP MQG_ACCST_64_GET_BYTES_P MQCFIN64 Get Bytes(Persistent)

BRS MQG_ACCST_BROWSES MQCFIN Browses
Constructed from sum of BRSNP and BRSP

BRSNP MQG_ACCST_BROWSES_NP MQCFIN Browses (Non-persistent)

BRSP MQG_ACCST_BROWSES_P MQCFIN Browses (Persistent)

BRSFAIL MQG_ACCST_BROWSES_FAILED MQCFIN Browses Failed

BRSBYTE MQG_ACCST_64_BROWSE_BYTES MQCFIN64 Browses Bytes
Constructed from sum of BRSBYTENP and BRSBYTEP

BRSBYTENP MQG_ACCST_64_BROWSE_BYTES_NP MQCFIN64 Browses Bytes (Non-persistent)

Page 160

https://www.ibm.com/docs/en/ibm-mq/latest?topic=reference-queue-statistics-message-data

MQEV User Guide – Version 9.4.1

MQSC Value PCF Constant PCF Type Description

BRSBYTEP MQG_ACCST_64_BROWSE_BYTES_P MQCFIN64 Browses Bytes(Persistent)

NOTQ MQG_ACCST_MSGS_NOT_QUEUED MQCFIN Messages not queued (Put to waiting getter)

EXPIRED MQG_ACCST_MSGS_EXPIRED MQCFIN Messages expired

PURGED MQG_ACCST_MSGS_PURGED MQCFIN Messages purged (CLEAR QL)

CBS MQG_ACCST_CBS MQCFIN MQCB calls
Constructed from sum of CBCREATE, CBREMOVE,
CBRESUME and CBSUSPEND.

CBCREATE MQG_ACCST_CBS_CREATED MQCFIN MQCB calls using MQOP_REGISTER

CBREMOVE MQG_ACCST_CBS_REMOVED MQCFIN MQCB calls using MQOP_DEREGISTER

CBRESUME MQG_ACCST_CBS_RESUMED MQCFIN MQCB calls using MQOP_RESUME

CBSUSPEND MQG_ACCST_CBS_SUSPENDED MQCFIN MQCB calls using MQOP_SUSPEND

CBSFAIL MQG_ACCST_CBS_FAILED MQCFIN MQCB calls failed

AVGQNP MQG_ACCST_64_AVG_Q_TIME_NP MQCFIN64 Average QTIME (Non-persistent)

AVGQP MQG_ACCST_64_AVG_Q_TIME_P MQCFIN64 Average QTIME (Persistent)

MINDEPTH MQG_ACCST_MIN_DEPTH MQCFIN Minimum depth

MAXDEPTH MQG_ACCST_MAX_DEPTH MQCFIN Maximum depth

RECORDS MQG_ATTR_RECORDS MQCFIN Number of records totalled together

Page 161

MQEV User Guide – Version 9.4.1

13.26 PURGE EVSTRMST
Use the MQSC command PURGE EVSTRMST (or it's equivalent PCF command
MQG_CMD_PURGE_EV_STREAM_STATUS) to purge the run-time status of streams in use on various queue
managers.

Streams are used to store the items (events, accounting and statistics records) processed by MQEV.

13.26.1 Syntax diagram for PURGE EVSTRMST

►►─ PURGE EVSTRMST(wildcarded-stream-name) ─ EVQMGR(wildcarded-qmgr-name) ─►

►── TYPE(─┬─ ALL ─────┬─) ──►◄
 ├─ EVENTS ──┤
 ├─ STATQ ───┤
 ├─ STATCHL ─┤
 ├─ STATMQI ─┤
 ├─ ACCTQ ───┤
 └─ ACCTMQI ─┘

13.26.2 Parameter descriptions for PURGE EVSTRMST

(wildcarded-stream-name)
The stream name to be purged. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_STREAM_NAME.

EVQMGR
The queue manager name related to the stream to be purged. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_Q_MGR_NAME.

TYPE
The type of streams to purge. This is a mandatory parameter. If you wish to purge all streams, you can use
TYPE(ALL) along with a wildcarded string for the stream name.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_STREAM_TYPE.

Possible values are:-

ALL
All stream types are to be purged.
The PCF value for this is MQG_STREAM_TYPE_ALL.

EVENTS
Purge only streams that contain event data.
The PCF value for this is MQG_STREAM_TYPE_EVENTS.

STATQ
Purge only streams that contain queue statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_Q.

Page 162

MQEV User Guide – Version 9.4.1

STATCHL
Purge only streams that contain channel statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_CHL.

STATMQI
Purge only streams that contain MQI statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_MQI.

ACCTQ
Purge only streams that contain queue accounting data.
The PCF value for this is MQG_STREAM_TYPE_ACCT_Q.

ACCTMQI
Purge only streams that contain MQI accounting data.
The PCF value for this is MQG_STREAM_TYPE_ACCT_MQI.

Page 163

MQEV User Guide – Version 9.4.1

13.27 REMOVE EVALERT
Use the MQSC command REMOVE EVALERT (or it's equivalent PCF command MQG_CMD_REMOVE_EV_ALERT) to
remove an alert from the system. Alerts can be used as reminders or notifications. Learn more about alerts in
Chapter 14 Alerts on page 172.

A log file entry will be written by this command showing the alert ID, and details, which was removed.

13.27.1 Syntax diagram for REMOVE EVALERT

►►─ REMOVE EVALERT ─┬── (alert-id) ──────────┬─────────────────────────────────►◄
 └─┤ alert-matching-block ├─┘

Alert Matching Block

►►─ TEXT(string) ───┬─────────────────────────────────┬────────────────────────►
 └─ CATEGORY(wildcarded-string) ─┘

►─┬──────────────────────────────────────┬─┬──────────────────────────────────┬──►
 └─ EVOBJNAME(wildcarded-object-name)─┘ └─ EVQMGR(wildcarded-qmgr-name) ─┘

►────┬──────────────────────────────────┬──►
 └─ EVOBJTYPE(─┬─ AUTHINFO ─┬─)───┘
 ├─ AUTHREC ──┤
 ├─ CFSTRUCT ─┤
 ├─ CHANNEL ──┤
 ├─ CHLAUTH ──┤
 ├─ CLNTCONN ─┤
 ├─ COMMINFO ─┤
 ├─ LISTENER ─┤
 ├─ NAMELIST ─┤
 ├─ NONE ─────┤
 ├─ PROCESS ──┤
 ├─ QUEUE ────┤
 ├─ QMGR ─────┤
 ├─ RQMNAME ──┤
 ├─ SERVICE ──┤
 ├─ SUB ──────┤
 ├─ STGCLASS ─┤
 ├─ TOPIC ────┤
 └─ TOPICSTR ─┘

13.27.2 Parameter descriptions for REMOVE EVALERT

(alert-id)
The unique ID of the alert. If specified, this must be an individual alert ID.

When using the PCF interface, this is an MQCFIN parameter with identifier MQG_ATTR_ALERT_ID.

CATEGORY
The category of the alert. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_ALERT_CATEGORY.

Page 164

MQEV User Guide – Version 9.4.1

EVOBJNAME
The object name that this alert refers to. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier MQG_ATTR_OBJECT.

EVOBJTYPE
The object type that this alert refers to.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_OBJECT_TYPE.

Possible Values are:-

MQSC value Meaning PCF constant

AUTHINFO Authentication information object MQOT_AUTH_INFO

AUTHREC Authorization records MQOT_AUTH_REC

CFSTRUCT CF Structure MQOT_CF_STRUC

CHANNEL Channel MQOT_CHANNEL

CHLAUTH Channel Authentication records MQOT_CHLAUTH

CLNTCONN Client connection channel MQOT_CLNTCONN_CHANNEL

COMMINFO Communication information object MQOT_COMM_INFO

LISTENER Listener MQOT_LISTENER

NAMELIST Namelist MQOT_NAMELIST

NONE None. MQOT_NONE

PROCESS Process MQOT_PROCESS

QUEUE Queue MQOT_Q

QMGR Queue manager MQOT_Q_MGR

RQMNAME Remote queue manager MQOT_REMOTE_Q_MGR_NAME

SERVICE Service object MQOT_SERVICE

STGCLASS Storage Class MQOT_STORAGE_CLASS

SUB Subscription MQG_OT_SUB

TOPIC Topic MQOT_TOPIC

TOPICSTR Topic String MQG_OT_TOPICSTR

EVQMGR
The queue manager to which this alert is associated. This can be a wildcarded string.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_ALERT_Q_MGR.

TEXT
The text of the alert. This must match exactly.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_ALERT_TEXT.

Page 165

MQEV User Guide – Version 9.4.1

13.28 REMOVE EVQ
Use the MQSC command REMOVE EVQ (or it's equivalent PCF command MQG_CMD_REMOVE_EV_Q) to remove a
queue from being processed by the MQEV event processor.

A log file entry will be written by this command showing the queue name that was removed.

13.28.1 Syntax diagram for REMOVE EVQ

►►─ REMOVE EVQ(queue-name) ───────►◄

13.28.2 Parameter descriptions for REMOVE EVQ

(queue-name)
The name of the IBM MQ event queue being removed from MQEV processing.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EVENT_Q_NAME.

Page 166

MQEV User Guide – Version 9.4.1

13.29 REMOVE EVQMGR
Use the MQSC command REMOVE EVQMGR (or it's equivalent PCF command MQG_CMD_REMOVE_EV_Q_MGR) to
remove details about a queue manager which events had previously been processed for.

A log file entry will be written by this command showing that the queue manager has been removed, and also
entries to show the purge as per the PURGE command if PURGE(YES) is specified.

13.29.1 Syntax diagram for DISPLAY EVQMGR

 ┌─ PURGE(NO) ───┐
►►─ REMOVE EVQMGR(qmgr-name) ───┼─────────────────┼─────►◄
 └─ PURGE(YES) ──┘

13.29.2 Parameter descriptions for REMOVE EVQMGR

(qmgr-name)
The name of the queue manager whose data is being removed from MQEV.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_Q_MGR_NAME.

PURGE
Whether to purge data about this queue manager from MQEV.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_Q_MGR_PURGE.

Possible values are:-

YES
Purge the data at the same time as removing the queue manager.
Using PURGE(YES) is equivalent to (and saves you from doing):-
PURGE EVSTRMST(*) EVQMGR(qmgr-name) TYPE(ALL)
The PCF value for this is MQG_PURGE_YES.

NO
Don't purge the data when removing the queue manager..
The PCF value for this is MQG_PURGE_NO.

Page 167

MQEV User Guide – Version 9.4.1

13.30 RENAME EVSTREAM
Use the MQSC command RENAME EVSTREAM (or it's equivalent PCF command MQG_CMD_RENAME_EV_STREAM)
to change the name of a stream.

Streams are used to store the records (events, accounting and statistics) processed by MQEV.

A log file entry will be written by this command showing the stream that was changed, and the new name.

13.30.1 Syntax diagram for RENAME EVSTREAM

►►─ RENAME EVSTREAM(stream-name) ── NEWNAME(stream-name) ──────►

►── ──┬──────────────────────────────┬───────────────────────────►◄
 └─── TYPE(─┬─ EVENTS ──┬─) ──┘
 ├─ STATQ ───┤
 ├─ STATCHL ─┤
 ├─ STATMQI ─┤
 ├─ ACCTQ ───┤
 └─ ACCTMQI ─┘

13.30.2 Parameter descriptions for RENAME EVSTREAM

(stream-name)
The name of the stream to be renamed. The maximum length of this string is
MQG_STREAM_NAME_LENGTH.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_STREAM_NAME.

NEWNAME
The new name of the stream. The maximum length of this string is MQG_STREAM_NAME_LENGTH.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_NEW_STREAM_NAME.

TYPE
The type of data that is stored on this stream. This attribute is optional, and only required if the stream
name is not a unique reference to the stream object being altered.

When using the PCF interface, this is an MQCFIN parameter with identifier
MQG_ATTR_STREAM_TYPE.

Possible values are:-

EVENTS
This stream contains event data.
The PCF value for this is MQG_STREAM_TYPE_EVENTS.

STATQ
This stream contains queue statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_Q.

STATCHL
This stream contains channel statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_CHL.

Page 168

MQEV User Guide – Version 9.4.1

STATMQI
This stream contains MQI statistics data.
The PCF value for this is MQG_STREAM_TYPE_STAT_MQI.

ACCTQ
This stream contains queue accounting data.
The PCF value for this is MQG_STREAM_TYPE_ACCT_Q.

ACCTMQI
This stream contains MQI accounting data.
The PCF value for this is MQG_STREAM_TYPE_ACCT_MQI.

Page 169

MQEV User Guide – Version 9.4.1

13.31 RESET EV
Use the MQSC command RESET EV (or it's equivalent PCF command MQG_CMD_RESET_EV) to reset the counts
shown on the MQEV event processor.

A log file entry will be written by this command showing that a reset happened and recording the counts prior to
the reset.

13.31.1 Syntax diagram for RESET EV

►►─ RESET EV ─── TYPE(COUNTS) ───────►◄

13.31.2 Parameter descriptions for RESET EV

TYPE
The type of RESET being done. When using the PCF interface, this is an MQCFIN parameter with
identifier MQG_ATTR_RESET_TYPE.

COUNTS
All the event counts will be reset to zero. The RESETTI attribute will be updated to record when
the reset command was issued. The counts prior to the reset are written to the MQEV log file.
This value has the PCF value of MQG_RESET_TYPE_COUNTS.

13.32 RESUME EVQ
Use the MQSC command RESUME EVQ (or it's equivalent PCF command MQG_CMD_RESUME_EV_Q) to resume an
event queue to be processed by the MQEV event processor.

A log file entry will be written by this command showing the queue name that was resumed.

13.32.1 Syntax diagram for RESUME EVQ

►►─ RESUME EVQ(queue-name) ───────►◄

13.32.2 Parameter descriptions for RESUME EVQ

(queue-name)
The name of the IBM MQ event queue being resumed for MQEV processing.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EVENT_Q_NAME.

Page 170

MQEV User Guide – Version 9.4.1

13.33 STOP EV
Use the MQSC command STOP EV (or it's equivalent PCF command MQG_CMD_STOP_EV) to stop the MQEV
program. The STOP EV command can only be issued by an MQEV administrator see Chapter.21 Security on page
219 for more information.

Alternatively, on z/OS, the MQEV program can be stopped using the MVS stop command. See 11.4 Stopping
MQEV using the MVS STOP command on page 60.

There are two features of the STOP EV command which makes it somewhat special:

1. Firstly, the STOP EV command is special in that it will only be executed if the command was issued after
the MQEV itself was started. This means that if there is an 'old' STOP EV command on the command
queue when MQEV is started it will be ignored.

2. This command will not generate a response. The reason for this is that the command can be used, say from
MQSCX, without concern for whether the MQEV is not running or in the process of ending. In other
words, MQSCX will not hang waiting for a response since it will not expect one.

13.33.1 Syntax diagram for STOP EV

►►─ STOP EV ────────────────────────►◄

13.33.2 Parameter descriptions for STOP EV

(None)

13.34 SUSPEND EVQ
Use the MQSC command SUSPEND EVQ (or it's equivalent PCF command MQG_CMD_SUSPEND_EV_Q) to suspend
an event queue from being processed by the MQEV event processor.

A log file entry will be written by this command showing the queue name that was suspended.

13.34.1 Syntax diagram for SUSPEND EVQ

►►─ SUSPEND EVQ(queue-name) ───────►◄

13.34.2 Parameter descriptions for SUSPEND EVQ

(queue-name)
The name of the IBM MQ event queue being suspended from MQEV processing.

When using the PCF interface, this is an MQCFST parameter with identifier
MQG_ATTR_EVENT_Q_NAME.

Page 171

MQEV User Guide – Version 9.4.1

14 Alerts
Alerts can be created in MQEV and used for a number of purposes. They can be created either by a user or a script.

14.1 Alert Definition
The following table briefly lists the main fields of an alert and their meaning.

Field Meaning

ALERTTI Alert time. The time the alert was raised.

CATEGORY A free-form string allowing you to group together alerts

EVENTID The id of the event associated with this alert (if any)

EVOBJNAME The associated Object name (if any)

EVOBJTYPE The type of the object given by the OBJNAME value.

EVQMGR The associated Queue Manager name (if any)

EXPIRETI Expire time. The time this alert will expire and be removed.

RETINTVL How long, in seconds, that this event should be kept
If necessary a large value, such as 999999999, will essentially make this non expiring

SEVERITY A severity setting of how important this alert is.

Value Suggested use

TERM Serious error which prevents MQEV from processing

SEVERE Severe error detected

ERROR Used for general errors found in MQ event processing

WARN Used for situations which aren't necessarily errors but may require user
attention.

INFO Low level information alerts. Normally users would not be expected to see these
alerts. They are only shown if explicitly asked for.

EVSTREAM The stream that the event associated with this alert is on (if any)

TEXT A text description of the issue.

Alerts can created with a reference to an event, if necessary. However, this is not mandatory, and you may have a
need to create alerts which do no refer to an event.

14.2 Alert Uses
Alerts can be used in a number of ways:

• To alert a user of a situation that requires attention

• As a reminder to a user that something ought to be done

• As a reminder to a script function to check the status of something

we will discuss each of these in turn in the sections that follow.

Page 172

MQEV User Guide – Version 9.4.1

14.2.1 User Alert
Perhaps the most common use of an alert is just to bring a situation to the attention of a user. This is most often
done because a criteria detected in the MQEVEvent() script function. The expectation is that an MQ Administrator
periodically checks the status of alerts in the system. The simplest way of of doing this is just to issue the
command:

DISPLAY EVALERT(*)

Or, perhaps more likely the Administrator has a command console which displays the status of events in the
system. For example, an MO71 GUI display.

Of course in an ideal world there would be no alerts. However, if the system wishes to bring something to the user
attention then the alert would defined. For example, suppose we wished the user to be alerted to any form of
authorisation failure in the system. We might have the following script:

func MQEVEvent()
 if (event.evtype = AUTHOR)
 @text = event.summary
 @objname = event.evobjname
 @objtype = event.evobjtype
 ADD EVALERT TEXT('<@text>') +
 EVOBJNAME('<@objname>') +
 EVOBJTYPE(<@objtype>) +
 CATEGORY(AUTHOR)
 endif
endfunc

This simple script checks the type of event and if it is an authorisation event it will add a new alert with the text of
the alert equal to the summary text of the event. By specifying a category we can easily reference or display just the
authorisation alerts.

In addition, this alert will have the EVENTID filled in by the system, since it was created within the MQEVEvent()
function.

14.2.2 User Reminder
Of course there is nothing to prevent a user from just manually adding their own alerts. This can be useful to set a
reminder for themselves. For example, suppose we wish to remind ourselves that we ought to upgrade to the latest
maintenance on a queue manager.

You could imagine issuing the following command:

ADD EVALERT TEXT('Upgrade MQ maintenance level') EVQMGR(MQG1)
SEVERITY(WARN) CATEGORY(REMINDERS)

Of course the severity of the alert would depend on the type of alert itself.

14.2.3 Script Reminder
There can be times where a script detects a condition but that it only becomes 'an error' if the condition is
maintained for some period of time. Consider, for example, a 'QUEUE HIGH' event. Actually receiving a 'QUEUE
HIGH' event may not be regarded as a problem. However, if a queue remains 'QUEUE HIGH' for, let's say, a
minute then that might be considered a problem. How would we code this? Clearly we don't want to have our script
processing to actually issue a wait since that would prevent subsequent events being processed which would defeat
the point. Well, it will be no surprise that the way we can process this is to use alerts.

Page 173

MQEV User Guide – Version 9.4.1

Situations of this nature follow a similar pattern. There is an event that raises the alert level and another which
clears it. In this case 'QUEUE HIGH' and 'QUEUE LOW' respectively. All we need to do therefore is raise an alert
when we see 'QUEUE HIGH' and remove it when we see 'QUEUE LOW'. If the alert we raise actually lives long
enough to expire then that is a real problem and perhaps we should tell someone. In this case we'll just raise another
alert.

The following script demonstrates the processing:

**
* Function for processing an event *
**
func MQEVEvent()
 @objname = event.evobjname
 @objtype = event.evobjtype
 if (event.evreason = PERQDPHI)
 **
 * Add a temporary alert that will expire in 60 seconds
 **
 ADD EVALERT TEXT('Queue High') +
 CATEGORY(QHIGHTEMP) +
 EVOBJNAME('<@objname>') +
 EVOBJTYPE(<@objtype>) +
 SEVERITY(INFO) RETINTVL(60) REPLACE
 endif
 if (event.evreason = PERQDPLO)
 **
 * Remove both alert types, temporary and final, wildcarded CATEGORY
 **
 REMOVE EVALERT TEXT('Queue High') +
 CATEGORY(QHIGH*) +
 EVOBJNAME('<@objname>') +
 EVOBJTYPE(<@objtype>)
 endif
endfunc

**
* Function called when an alert expires *
**
func MQEVAlertExpire()
 if (alert.category = 'QHIGHTEMP')
 @objname = alert.evobjname
 @objtype = alert.evobjtype
 ADD EVALERT TEXT('Queue High') +
 CATEGORY(QHIGH) +
 EVOBJNAME('<@objname>') +
 EVOBJTYPE(<@objtype>) +
 SEVERITY(WARN) REPLACE
 endif
endfunc

This script shows just how easy it is to delay processing, let's work through the code.

All events will come in to the MQEVEvent() function. In this case we are interested in the 'QUEUE HIGH' and
'QUEUE LOW' events. So, the first thing we do is check the reason for the event i.e.

Page 174

MQEV User Guide – Version 9.4.1

if (event.evreason = PERQDPHI)

If it is a 'QUEUE HIGH' event then all we want to do is add a temporary alert with a fairly short expiry time, let's
say 60 seconds. We also set it at the lowest severity since this is not an error yet. We also choose a category name
for these 'temporary queue high' events, let's say 'QHIGHTEMP'. This can be any name you find appropriate.

If, on the other hand, we are receiving a 'QUEUE LOW' event then we can remove any previously created alerts
since all seems well. So, we remove any 'QHIGH' or 'QHIGHTEMP' alerts for this queue name. We do this in a
single command by using a wildcarded category name of 'QHIGH*'.

However, if the 'QHIGHTEMP' alert actually expires (ie. a 'QUEUE LOW' event does not arrive within 60 seconds
and delete it) MQEVAlertExpire() is called. Now we need to actually raise a “real” alert. In this case we choose
just to add a higher severity alert but you could choose to send an email/SMS or whatever.

Of course this is just an example. You could change the code to suit your requirements. For example, you might
only want to do this type of processing for certain queue names or even at only certain times of the day. You can
make the conditions as specific as you like.

There are in fact other ways of checking for a 'QUEUE HIGH' event. Depending on your familiarity with MQ
event reason code, you may prefer to use of these instead.

Instead of:

if (event.evreason = PERQDPHI)

we could have said

if (cfh.reason = 2224)

or even

if (cfh.reason = const.MQRC_Q_DEPTH_HIGH)

They all have the same effect.

14.3 Alert Retention
Given the various different uses for alerts, sometimes the lifespan of an alert is quite long, say several days or
weeks, for example, until the new maintenance level has been applied; and sometimes it is much shorter, say a
minute or two while you wait to see if a queue high state lasts long enough to worry about it.

Due to these two differing uses, the default alert retention interval that is defined on the EV object (see ALTER EV
on page 71) is measured in days, but if you specify it on an ADD EVALERT command (see page 65) then it is
measured in seconds.

It is expected that if you are adding an alert with a long lifespan, as a reminder for a human operator, you will likely
just allow the default retention value to be used, or will be using a GUI Tool such as MO71 which makes the units
obvious, and allows you to type in “5 days” if you need to provide a non-default value.

If you are writing a script as shown in the example above, you'll want a much shorter lifespan than could be
specified in days, and so for all these cases, it is clear that a value in seconds is appropriate.

14.4 Maximum Number of Alerts
Alert definitions are saved to the data queue in a single message. This means that you cannot have more alerts than
will fit into, say, a 4MB message. In practice this should not be a limitation since this would allow for 10's of
thousands of alerts. The expectation is that the user will act on the alerts and delete them once they have been dealt
with. However, if the user does not do that, and this limit is reached, MQEV will start pruning the list of alerts as
required, starting with the oldest, lowest priority, first.

Page 175

MQEV User Guide – Version 9.4.1

14.5 Alert Publication
MQEV supports a number of different objects and to discover their value you need to issue some form of DISPLAY
command. For most objects this if fine however for ALERT objects this could lead to a considerable amount of
polling. After all, you want to find out about new alerts as soon as possible. So, to solve this problem MQEV will
publish out any changes to any alerts. This way you find out about changes very quickly and yet if there aren't any
updates then the system does not burn unnecessary CPU and bandwidth.

MQEV will publish alerts on the topic 'MQGem/MQEV/Alerts'.

Note that MQEV will not publish changes to alerts at severity INFO. Alerts at this level are considered internal
and would not normally be displayed externally.

MO71 subscribes to this topic string when you have an alerts list dialog open, so it can automatically refresh when
a new alert is added or one is removed, saving you from needing to repeatedly press the 'Refresh' button or use
Auto Refresh on the dialog.

14.5.1 Publication Message Format
The format of the publication is a PCF message with the following values:

Field Value

MQCFH.Command MQG_CMD_ADD_EV_ALERT
MQG_CMD_REMOVE_EV_ALERT

Message Fields MQG_ATTR_ALERT_ID

MQG_ATTR_ALERT_TEXT

MQG_ATTR_ALERT_SEVERITY

MQG_ATTR_ALERT_CATEGORY

MQG_ATTR_RETENTION_INTERVAL

MQG_ATTR_ALERT_TIME

MQG_ATTR_ALERT_Q_MGR

MQG_ATTR_OBJECT

MQG_ATTR_EVENT_ID

MQG_ATTR_STREAM_NAME

Message Properties “Severity”
This means that you can subscribe to only certain severities.

Page 176

MQEV User Guide – Version 9.4.1

15 Event Storms
Event storms are occasions when MQEV is deluged with lots of very similar events. This can happen for a variety
of reasons but perhaps the simplest to consider is a rogue application. Consider the case where you have a badly
written application which tries to connect to a Queue Manager and, if it fails, immediately tries again. This can
cause a huge number of authority events being raised. This storm of events can clearly clog up the works to say
nothing of the wasted storage.

To mitigate against event storms MQEV will check whether an event has been seen more time than a threshold
value within a certain time interval. These values are configured in the EV object as STORMTHR and STORMINT. By
default they have values of 20 and 60. This means that if the same event is seen more than 20 times in 60 seconds
then the processing of the event is delayed. At the end of the 60 seconds a single event is processed with a count of
how many times the event was seen in that interval.

If required the values for STORMTHR and STORMINT can be modified according to your requirements.

So, if an event storm is detected then at most (STORMTHR+1) events within each STORMINT interval will be
generated. That is STORMTHR 'normal' events plus one storm event. The storm event will be the same as the first
event in the storm with the addition of an EVREPEAT field which gives the number of events detected within the
interval. So, for example, you can display the event storms detected with the following command:

DISPLAY EVENTS(*) WHERE(EVREPEAT)

15.1 Storm Alert
If an event storm is detected then MQEV will raise an alert. The text of the alert will be a description of the event
and how many times it was detected within the time interval. The category of this event will be “$STORM”.

The alert will also contain a reference to the event id of the above mentioned event that counts the number of
repeats, and the object name and type, if the event is related to an object.

Here is an example of an event and alert from an event storm.

EVQMGR(MQG1) EVENTS($EVENTS) EVTIME(2019-10-11 16:48:54 (Local))
EVREASON(INHPUT) EVTYPE(INHIBIT) EVOBJNAME(NON.PUTABLE)
EVOBJTYPE(QUEUE) EVENTID(00000073) CFHCMD(44) CFHREASON(2051)
SUMMARY(Inhibit Put - Queue:NON.PUTABLE) QUEUE(NON.PUTABLE)
APPLTYPE(WINDOWSNT) APPLNAME(D:\nttools\q.exe) EVREPEAT(13)

Here is the alert that refers to this event.

EVALERT(1) EVQMGR(MQG1) EVOBJNAME(NON.PUTABLE)
EVOBJTYPE(QUEUE)
TEXT(Event Storm Detected 'Inhibit Put - Queue:NON.PUTABLE' repeated 33 times.)
SEVERITY(WARN) CATEGORY($STORM) ALERTTI(2019-10-11 16:49:54 (Local))
EXPIRETI(2019-10-25 16:49:54 (Local)) RETINTVL(1209600) EVENTID(00000073)
EVSTREAM($EVENTS)

You can see that the alert provides the STREAM name, the EVQMGR name and the EVENTID which when combined
uniquely identify the event that caused the alert to be raised.

Page 177

MQEV User Guide – Version 9.4.1

16 MQEV Scripting
MQEV must always have a script file which tells it what to do as certain events occur. A default script file,
mqev.mqx, is provided in the installation. The provided installation file essentially does nothing. If it is not a
requirement for MQEV to respond to events then this file can be left as it is, but the minimum structure shown in
the provided file is mandatory even on z/OS where the PCF Accounting and Statistics are not available. In other
words it is not necessary to have any actual scripting at all. However, if you wish to take actions upon the arrival of
certain events then you can add some instructions to the script file. Don't worry though, it is very simple.

The basic principal is that there are some standard functions which are called at certain points in the processing. For
example the function MQEVEvent() is called whenever MQEV receives an event of any type. This function is
probably the most important function and the most likely one that you will want to add to. However, there are other
functions as follows:

Function Name Purpose

MQEVEnding Called when MQEV is ending

MQEVConnected Called when MQEV has just connected to a Queue Manager

MQEVDisconnected Called when MQEV has disconnected from a Queue Manager

MQEVRetryConnect Called when MQEV is retrying to connect to a Queue Manager

MQAlertExpire Called when any alert expires

MQEVEvent Called when MQEV receives an event of any kind

MQEVAcctMQI Called when MQEV receives an MQI accounting message.

MQEVAcctQ Called when MQEV receives a Queue accounting message.

MQEVStatChl Called when MQEV receives an Channel statistics message.

MQEVStatMQI Called when MQEV receives an MQI statistics message.

MQEVStatQ Called when MQEV receives a Queue statistics message.

What you choose to do in the script is entirely up to you. For example, you could can write to a file, issue an MQ
command, or raise an MQEV alert or perhaps issue an OS command (for example to send an email or SMS text
alert).

The way you issue a script is very simple. Consider this simple code:

func MQEVEvent()
if (event.evtype = AUTHOR)
 ADD EVALERT TEXT(event.summary)
end

This code will check the type of event and if it is some type of authorisation failure then it will add a new alert. Of
course we could have made it more specific. We could have checked the object name or type or perhaps the user
causing the problem. Or perhaps we might want to check the time of day etc.

There is no practical limit to what you can check for nor what you can choose to do should that situation arise.

Page 178

MQEV User Guide – Version 9.4.1

16.1 Invoking other programs from your script
There will be times in your scripts that you wish to invoke a program or command/shell script to do something
outside of MQEV, such as email or text someone, or run a program, for example you could use the Q program to
send messages to a queue that might trigger other processes. To do this, you can use the MQSCX control language
function system(). For more details of the syntax of this and other MQSCX control language functions, see
Appendix B. Expression Functions on page 230.

Here’s an example of using the Q program to put a message to a logging queue when an event has arrived in
MQEV. The command string to invoke is built up using the _qmgr system variable rather than hard-coding the
queue manager name, and using the event association variable event.summary for the current event being
processed. Read more about Association Variables and System Variables in 17.2 Variables on page 182.

func MQEVEvent()
 @CmdStr = "q –m" + _qmgr + ' –oLOG.Q –M"' + event.summary + '"'
 system(@CmdStr, const.SYNC)
endfunc

Invocations using the system() function can be either synchronous or asynchronous, specified in the optional
second parameter. If the second parameter is omitted, the default value is to run asynchronously in order to
maintain behaviour from prior releases. Depending on the command you are issuing, it may be that synchronous
mode is more appropriate.

16.1.1 Synchronously
Invocations made using the system() function in synchronous mode only return control to MQEV once the
command completes, so be careful not to use long running commands in this way.

Commands are invoked by the command processor (CMD) on Windows, and through the shell /bin/sh on other
platforms, so redirection of output, say to a text file, is possible. Otherwise the output from the command may show
up in the MQEV foreground window in some environments.

Using synchronous mode may be useful when testing the script to ensure you have the correct command string
since output is easier to see.

We could imagine extending our earlier example like this using the _os system variable to choose a temporary file
to redirect our command output to. Note on z/OS, running a program using the sh shell, means redirection of
output can only use an HFS file, not an MVS dataset.

func MQEVEvent()
 @CmdStr = "q –m" + _qmgr + ' –oLOG.Q –M"' + event.summary + '"'
 if (_os = "WINDOWS")
 @CmdStr = @CmdStr + "> c:\temp\Q.out 2>&1"
 else
 @CmdStr = @CmdStr + "> /u/gemuser/Q.out 2>&1"
 endif
 system(@CmdStr, const.SYNC)
endfunc

16.1.2 Asynchronously
Invocations made using the system() function in asynchronous mode, return control to MQEV immediately, so if
you have a long running command to invoke, you should perhaps use this mode.

 system(@CmdStr, const.ASYNC)

Redirection of output written to stdout or stderr is not possible in this mode.

Page 179

MQEV User Guide – Version 9.4.1

17 Script Control Language
The MQEV script language is heavily based on the script language found in our MQSCX product. There are some
minor difference with regard to naming of variables and some system variables but in general if you are at all
familiar with the MQSCX product then you will have no problem writing MQEV scripts. And even if you have
never used MQSCX you will find that the script language is very easy to pick up.

17.1 Getting started with the control language
If you are not familiar with the script language at all then it may be easier to play with the language using MQSCX
rather than MQEV. The reason for this is that MQSCX is a user driven program whereas MQEV is driven by the
arrival of event messages. In other words we can just type in some commands in MQSCX and see their effect
whereas in MQEV we have to modify one of the functions mentioned in the previous section and then arrange for
that function to be invoked. So, since your MQEV also allows you to run MQSCX let's use that program for a
while until we get a feel for the language.

So, let's start simple, run the MQSCX program. Suppose I just want to issue something to the screen. Well I have
the print command. So, type in the following command and press enter.

print "Hello World"

We see that MQSCX responds, not surprisingly with what we asked it to print. Suppose we give it something a
little more complicated.

print 4 * 5

We can see that MQSCX treating what it has been given as as expression to be evaluated.

So, can we print out something we have received from the command server. Suppose we want to print out some
events, how could we do that ? Well, try typing in the following but make sure you type it just as shown (better yet
use copy/paste31).

foreach(DISPLAY EVENTS(*)) print SUMMARY; endfor

So, we run this command and we see that MQSCX does indeed write out all the event summary text but we also get
lots of other stuff. Well, these are the commands that MQSCX is executing under the covers. Normally these
wouldn't be shown but they can be very handy to see it going on. We can suppress them using the command

=echo langcon(no)

This command basically says don't echo control language lines even when entered from the console. So, if we issue
the foreach command again.

foreach(DISPLAY EVENTS(*)) print SUMMARY; endfor

We now see that just the summary text displayed. However, suppose we also want to see the time the event
happened. How would we do that ? Well, use command recall and add 'evtime' to the print statement.

31 You have to be a little careful with copy and paste though, especially when the text contains double quote characters.
Unfortunately there are different flavours of double quote characters used in documents, you need to ensure that you use
the standard one for programming.

Page 180

MQEV User Guide – Version 9.4.1

foreach(DISPLAY EVENTS(*)) print EVTIME,SUMMARY; endfor

Issue this command and we see that we now have the event time and the summary text displayed. In MQEV we
probably won't be printing things to the screen that often but it can be one of the simplest and easiest debugging
aids so it is a useful thing to learn first. The print statement has a number of options which control how the data is
displayed but for now let's concern ourselves with what else is going on in this command.

The first thing you would have noticed is the 'foreach' command. This is a very simple command which takes
some form of DISPLAY command as a parameter and will execute the sequence of instructions up to it's
corresponding 'endfor' statement for each response it receives from the command server. The responses
themselves are not echoed to the screen but can be shown by issuing a =set noecho(yes) command.

So here we have a very simple way of find out the current state of the queue manager, or of MQEV. We can issue
any DISPLAY command and then parse the results. So, how do we control whether we are sending the command to
IBM MQ or to MQEV ? Well, this is very simple and is controlled by the last =mqev or =mqsc command issued.

So, that gives you an idea of how to issue an MQ command. But of course in MQEV we are normally dealing with
data that has been sent to us in an event message rather than by us issuing a command. How do we access the event
data? This brings us on to variables.

Page 181

MQEV User Guide – Version 9.4.1

17.2 Variables
Perhaps the mainstay of any programming language, variables allow us store, retrieve, calculate and compare
values. MQEV supports four types of variables, association, user, system and response. We will consider each of
these in turn.

17.2.1 Association variables
Association variables are sets of variables that are associated with a certain aspect of the state of the program. They
all use a prefix to identify which aspect of the current state they are associated with. There are a number of different
types of associated variable:

Prefix Meaning Examples

event. Event variables allow you to access the 'current' event message.

These variables are only available in the MQEVEvent() and
MQEVAlertExpire() functions.

The names of the event variables match the names of the MQSC
keywords for the output fields in a DISPLAY EVENTS command.

event.evtype
event.summary

data. Data variables allow you to access the 'current' accounting or
statistics record.

These variables are only available in the accounting and statistics
functions.32

The names of the data variables match the names of the MQSC
keywords for the output fields in the equivalent display command.
For example, for MQEVAcctMQI() look in DISPLAY ACCTMQI.

There are several constructed fields in the DISPLAY commands –
these cannot be accessed from the function. The description of the
DISPLAY commands indicate which these are and how to obtain the
same data. For example ALLPUT is constructed from the sum of
PUTNP, PUTP, PUT1NP and PUT1P.

data.rversion
data.expired

mqmd. MQMD variables allow you to access the MQMD fields associated
with an event message or accounting and statistics record.

These variables are only available in the MQEVEvent() function and
the accounting and statistics functions.32

The names of the MQMD variables match the names as shown in
the 'C' structure definition in cmqc.h.

mqmd.UserIdentifier
mqmd.ReplyToQMgr

cfh. CFH variables allow you to access the MQCFH fields associated
with an event message or accounting and statistics record.

These variables are available in the MQEVEvent() function and the
accounting and statistics functions.32

The names of the CFH variables match the names as shown in the
MQCFH 'C' structure definition in cmqcfc.h.

cfh.reason
cfh.command

32 The functions MQEVAcctMQI(), MQEVAcctQ(), MQEVStatChl(), MQEVStatMQI(), and MQEVStatQ().

Page 182

MQEV User Guide – Version 9.4.1

Prefix Meaning Examples

before. This form of association variable allows to you to particularly target
the 'before' version of a variable. As you might expect then this only
applies to change configuration events that are notifying MQEV that
something has changed. By comparing the 'before' variable with the
'after' variable you could check whether someone is changing a
particular field of an object.

before.maxmsgl

after. See 'before.' above after.maxmsgl

cmddata. Some events contain groups of fields. This prefix allows you to
specifically target fields in the 'command data' group.

cmddata.queue

cmdctx. Some events contain groups of fields. This prefix allows you to
specifically target fields in the 'command context' group.

cmdctx.evorigin

alert. Alert variables allow you to access the fields of an expiring alert.
These variables are only available in the MQEVAlertExpire()
function.

alert.text
alert.objname
alert.objtype

const. Constant variables allow you to use a text string to refer to standard
MQ constants.
These variables are available at any time.

const.MQCA_Q_NAME
const.MQPER_PERSISTENT

In addition to these prefixes, there are some fields which have multiple constituent parts. For these fields you can
use a suffix to identify which part you want to refer to.

Suffix Meaning Examples

.long This suffix is applicable only to indicator event variables and it
allows you to access specifically the long term average value.
This suffix only applies to event variables.

event.nettime.long

.short This suffix is applicable only to indicator event variables and it
allows you to access specifically the short term average value.
This suffix only applies to event variables.

event.nettime.short

17.2.2 User Variables
User variables are variables which have, for the most part, been defined by control program itself. They are the
only variables for which you can change their value. The key thing about user variables is that they always start
with an '@' characters. The variables can contain any type of data, strings, integers, lists or real numbers. All of the
following are valid.

@a = 1
@a = "This is a test string"
@a = 3.1415

It is not necessary to define a variable before use you just use them whenever you wish. An easy way to check the
value of a variable is to just print it to the screen.

print @a

Note that if we try and print a variable that does not exists yet we get an error message

Page 183

MQEV User Guide – Version 9.4.1

print @xxx
Error Message: Variable '@xxx' is not defined in the current scope.

There are exceptions to this and those are environment variables. If a variable has not been defined by the program
then MQEV will look to see whether there is an environment variable of that name, Try this:

print @temp

The chances are that you have a 'temp' environment variable so the print statement will have printed it's value. Now
you can override the value will something like this.

@temp = "My Value"

If you do this then you have created an in program version of a @temp variable. You have not changed the temp
environment variable itself. So, the program need not worry about accidentally using a name that has an
environment variable. However, environment variables can be a useful way to effectively pass parameters into your
command files. For example, you could specify the path to a file or perhaps switch on a debugging flag.

There are some rules about naming of user variables

• The name is limited to 30 characters, which includes the '@' character.
• The character following the '@' must be alphabetic or the underscore '_' character.

It is recommended that you avoid calling your user variables starting with @_ since these may be used by
the MQEV program itself.

• Following characters can be alphanumeric, '.' or '_'
• User variables are case sensitive so @a and @A are different variables.

When a variable is defined, or first used, then it is defined in the current stack frame. The variable is available in
the current stack frame or any higher stack frames. Any variables defined at the lowest stack frame will remain
until the program ends unless it is explicitly deleted using the delvar() function, see 'Expression Functions' for a
description of available functions. However, variables created in functions, i.e. Higher stack frames, will be deleted
when the function returns. Please see Variable Scope and Stack Frames on page 189 for more information on this
topic.

17.2.3 Arrays
There are times when you want to store large amounts of data. For example, suppose you wish to read all the queue
definitions and store the values. It would not be feasible to define a different variable for each value. So, MQEV
allows you to use arrays. An array is essentially a user variable with a subscript. The following are all valid uses of
an array:

@var[5] - the 5th element of array @var
@queue[6,10,2] - multiple subscripts can be used
@mult[3,5,6,1] - up to four subscripts can be used

It is not necessary to define the array before use. Arrays are sparse. This means that just because element @var[5]
is defined it doesn't necessarily mean that element @var[4] is defined. Arrays are indexed from 1. Array element
@var[0] is not valid. Each element of the array can contain a different data type. For example the following
sequence is perfectly valid.

Page 184

MQEV User Guide – Version 9.4.1

@val[1] = "Value"
@val[2] = 24
@val[3] = "Average"
@val[4] = 7.8

Once a variable is defined it remains until the program ends unless it is explicitly deleted using the delvar()
function, see 'Expression Functions' for a description of available functions. The delvar() can be used to delete the
entire array or just a single element.

Page 185

MQEV User Guide – Version 9.4.1

17.2.4 System Variables
System variable are special variables which are provided by MQEV itself. Most system variables can not be
changed by an assignment. System variables all start with the underscore '_' character.

The following system variables are defined:

Name Value

_ccdt The name of the current CCDT file.

_ccdtmode Boolean indicating whether MQEV is currently in CCDT mode.

_client Boolean indicating whether MQEV is currently connected as a client or not.

_cmdok Boolean indicating whether the previous MQ command was successful.

_cmdlevel The integer command level of the Queue Manager MQEV is administering. A value of -1 is
returned if MQSCX is not currently connected.

_connqmgr The name of the Queue Manager MQEV is currently connected to.
This will differ from system variable _qmgr if you are connected in via mode.

_dspcmd Boolean indicating whether the current event is a DISPLAY command event.

_emit The emit object to use to emit this event.
This value can be changed as required.
Setting it to the value "$null" will cause the event not to be emitted. A value of "" will cause the
event to sent to the emit object defined on the stream the event is written to.

_errno The current system errno.

_errnostr A brief description of the current system errno.

_idxEach Only meaningful inside a foreach(...) loop. It contains the index of the object which is being
processed. Outside of a foreach(...) loop the variable has the value 0.

_idxItem Only meaningful inside a foritem(...) loop. It contains the index of the item which is being
processed. Outside of a foritem(...) loop the variable has the value 0.

_idxWhile Only meaningful inside a while(...) loop. It contains the iteration number of the loop. Outside of
a while(...) loop the variable has the value 0.

_item Used in a foritem(...) endfor loop. It contains the current list item value.

_lastrc The last MQ reason code. For example from an =conn command
If MQEV is not currently connected it will return MQRC_NOT_CONNECTED (6124)

_lastrcstr A brief text description of the last MQ reason code above.

_lastresp The last response from an DISPLAY command
For example, “QUEUE(Q1) TYPE(QLOCAL) CRDATE(25122013).....”

_lic_cn The licence contact name.

_lic_em The licence email address.

_lic_lc The licence licensee value.

_lic_rm The number of days remaining on the licence.

_nl Newline character. When printed this string will cause a new line.

_numEach After processing a foreach(...) loop this variable contains the number of iterations of the loop.

_numItem After processing a foritem(...) loop this variable contains the number of iterations of the loop.

_numWhile After processing a while(...) loop this variable contains the number of iterations of the loop.

Page 186

MQEV User Guide – Version 9.4.1

_os The Operating System MQEV is running on.
Possible values are: “AIX”,”LINUX”,”PLINUX”, “WINDOWS” or “MVS”

_platform A string containing the platform of the Queue Manager MQEV is administering. A value of
“NOTCONNECTED” is returned if MQEV is not currently connected.

_qmgr The name of the Queue Manager MQEV is currently administering

_responses The number of responses from the command server for the last DISPLAY command

_sep Separator. When printed this string will cause a separator line to be written.

_stream The stream this event will be written to. This value can be changed as required to alter which
stream(s) this data is added to. By setting it to a comma separated list the data can be added to
multiple streams. For example:

_stream = “$ACCTQ, ACCTQAGGR”

Setting it to the value "$null" will cause the event to be discarded.
A value of "" will cause the event to sent to the default stream.

_time The current time in seconds from January 1st 1970.

17.2.5 Response Variables
Response variables are the simplest way of processing responses from a DISPLAY command. A response from a
DISPLAY command might look like this:

QUEUE(SYSTEM.DEFAULT.LOCAL.QUEUE) TYPE(QLOCAL) CURDEPTH(0)

This response will automatically define three response variables, QUEUE, TYPE and CURDEPTH. The values of
the response variables will be values contained between the brackets. A response variable will always exist but they
may have zero length if not returned by the command itself. This is helpful when writing scripts which are to be
MQ version independent. You can specify any name, for example one that hasn't been defined yet on this Queue
Manager, and MQEV will just return the empty string if it is not returned on the command. It does however mean
that you have to be careful about how you spell the variable since spelling mistakes will not be reported.

Response variable are case insensitive, so although the command server returns the field in upper case it quite all
right to refer to them in lower case.

For example if we printed out the values we would see the following.

print QUEUE,TYPE,CURDEPTH
SYSTEM.DEFAULT.LOCAL.QUEUE QLOCAL 0

Response variables are over written at the next MQ command. Therefore if you need to save the value of a
response variable you should assign it to a user variable. For example:

@queue = QUEUE
@depth = CURDEPTH

As in the =WHERE clause indicator fields can be referenced using the suffixes .short' and '.long'.

For example:

print qtime.short, qtime.long

There are some responses which can not be accessed via response variables.

Consider the following:

Page 187

MQEV User Guide – Version 9.4.1

DISPLAY QUEUE(SYSTEM.DEFAULT.LOCAL.QUEUE) TRIGGER
QUEUE(SYSTEM.DEFAULT.LOCAL.QUEUE) TYPE(QLOCAL) NOTRIGGER

Unfortunately MQSC does not respond with something like TRIGGER(YES) or TRIGGER(NO). Instead it returns
the single string 'NOTRIGGER'. If you really need to know whether the queue returned TRIGGER or NOTRIGGER you
can use processing like this.

if (findstr(_lastresp,"NOTRIGGER")) @trig = "NO"; else @trig = "YES"; endif
print @trig

This code fragment uses a system variable that we mentioned in the previous section, '_lastresp'. _lastresp
contains the whole of the response from the last DISPLAY command33. So, if we search for the word “NOTRIGGER”
in that response we can determine whether triggering is enabled or not and set our user variable accordingly.

Perhaps the most common use of response variables are in a foreach() clause. We have already seen a few
examples in the introduction, we just didn't know they were called response variables.

Consider the following.

foreach(DISPLAY QUEUE(*))
 print queue,curdepth
endfor

In a foreach() clause the sequence of commands contained in the foreach() block is invoked for every
response to the DISPLAY command. So, naturally any response variables contained in the response are available
during the loop execution.

33 Provided that no other MQ commands have been issued since the DISPLAY response

Page 188

MQEV User Guide – Version 9.4.1

17.3 Variable Scope and Stack Frames
All user variables belong to a particular stack frame. When a user variable is defined or first used it is created in the
current stack frame. The current stack frame is merely the current level of the stack. For example, when the
program starts you are at stack frame 0. If the program now invokes a function you are now at stack frame 1. If that
function invokes another function you would be at stack frame 2 and so on. Each of these stack frames can have
user variables defined. When execution reached the end of a stack frame then any variables owned by that stack
frame will be deleted. Consider the following example:

func bar(a)
 print @a
endfunc

func foo(a)
 bar(@a+1)
 print @a
endfunc

@a = 1;
foo(@a+1)
print @a

This results in the output:

3
2
1

So, even though the program only ever prints out the value of @a we get three different values. This demonstrates
that we can have multiple variables each with the same name at the different stack levels. As you can see, this is
achieved because each of the functions specified that 'a' is a parameter. By definition parameters are variables local
to the current stack frame. However, suppose we didn't define a variable in the functions, would it be visible ?

Let's try the following:

Page 189

MQEV User Guide – Version 9.4.1

func bar(a)
 print @a,@b
endfunc

func foo(a)
 bar(@a+1)
 print @a,@b
endfunc

@a = 1;
@b = 2;
foo(@a+1)
print @a,@b

We've just added a new variable, @b, and given it the value of 2 in the main program. The functions make no
declaration of @b, they just print out the value.

As suspected the output is now:

3 2
2 2
1 2

When a function accesses a variable it finds the definition with the nearest stack frame. So, if we updated the value
of @b in function foo() would the change be reflected in the main program? Let's try it:

func bar(a)
 print @a,@b
endfunc

func foo(a)
 @b = 3
 bar(@a+1)
 print @a,@b
endfunc

@a = 1;
@b = 2;
foo(@a+1)
print @a,@b

The output is:

3 3
2 3
1 3

Yes!, the updated value is seen by everyone. Perhaps this is not a surprise since there is only one actual variable
@b. However, suppose now I wanted function foo() to have it's own variable @b, to ensure that it couldn't mess up
its callers value. Well we can do that by adding a var.

Page 190

MQEV User Guide – Version 9.4.1

func bar(a)
 print @a,@b
endfunc

func foo(a)
 var b
 @b = 3
 bar(@a+1)
 print @a,@b
endfunc

@a = 1;
@b = 2;
foo(@a+1)
print @a,@b

The output is now:

3 3
2 3
1 2

So, now we see that both foo() and bar() see @b as having the value 3 but when we drop back to the main program
it sees @b as having the original value 2.

The notion of stack variables is very common among programming languages and you should find it fairly
intuitive. The only aspect that is somewhat unusual is that variables can be found anywhere up the stack. Most
languages have the concept of local and global variables. By defining variables in a function MQEV allows you to
define values which are partially global, i.e. only visible to functions further up the stack.

17.4 Expressions
Expression in MQEV follow the normal convention in term of operator precedence. A full list of the operators are
given in 'Expression Operators' on page 229.

17.4.1 Data Types
MQEV understands the following data types

• String
A string can be treated as a list using for foritem(...) clause.

• Integer
• Real

17.4.2 Coercion
In general data types are coerced automatically so that an expression can contain operands of different types
without problem. Perhaps the most surprising and yet useful coercion is when a string is used as a number.
Consider the following expression.

Print +"Hello World"

Here we have an arithmetic operator '+' and a string operand. MQEV could have disallowed this combination but
instead it coerces the string into a number, and that number is the string length. So, the expression about will print
out 11. This is more useful than you might think. Consider the following example:

Page 191

MQEV User Guide – Version 9.4.1

if (channel) print "Client connection"; endif

Here we are using a string value as the expression in a boolean field. The if() clause wants a TRUE or FALSE result
and yet we are passing it a string. However, since a string is coerced to a numeric value by virtue of it's length we
get the desired result. In other words, the if expression will be TRUE if the channel variable has a value and FALSE
if it has no length.

However, there are some combinations of operand and operators which are not allowed. For example consider the
following expression.

print "Hello" / "World"

This really doesn't make any sense. Trying to divide one string by another has no real meaning so MQEV will
report an error.

Page 192

MQEV User Guide – Version 9.4.1

17.4.3 String Concatenation
One common operation you may wish to perform is concatenating strings. This can be achieve very simply using
the '+' operator. For example:

@str = "Hello" + "World"
print @str
HelloWorld

Note that MQEV concatenates the string exactly, no spacing character is added. You need to add that to the original
strings if required.

However, now consider the following:

@depth = 50
@str = "CURDEPTH(" + @depth + ")"
print @str
61

61! This may have seemed a very strange result until you remember our discussion previously about coercion.
Remember that if you use a string and a number in the same expression that the string length will be used in the
calculation. What we need is a way of converting the number into a string. And luckily there is a very simple
function str(). So, let's try this:

@depth = 50
@str = "CURDEPTH(" + str(@depth) + ")"
print @str
CURDEPTH(50)

Great, that's just what we wanted. The str() function can be used on any data type.

17.5 Inserting code fragments
It is possible to add extra code into the command stream. Consider the following:

@cmd = "DISPLAY QUEUE(SYSTEM.DEFAULT.LOCAL.QUEUE)"
@cmd

The @cmd statement will actually run the command that is contained in the variable. This may not be too
surprising but it is actually more powerful than it first appears. Now consider the following:

@cmd = "if (curdepth) print 'Queue is not empty'; endif"
@cmd

This demonstrates two things.

1. There is no limit on the commands which can be inserted in this manner.
The control program can construct the command at run time and then execute them; a self modifying
program if that is useful.

2. This examples shows how to insert quotes characters inside a string
To identify a string in an expression you can use either ' or “ characters. The string is ended when that
character next appears in the string. So, to write a string inside another string all you need do is use the
other quote character.

Page 193

MQEV User Guide – Version 9.4.1

17.6 Substitution commands
Substitution commands are a simple way of inserting a variable into command. Suppose we wish to display a queue
but want the queue name to come from a variable. We could do the following:

@q = "SYSTEM.DEFAULT.LOCAL.QUEUE"
@cmd = "DISPLAY QUEUE(" + @q + ")"
@cmd

This works just fine and could well be the way to do it in some cases. However, using substitutions we can use a
short cut. Look at the following:

@q = "SYSTEM.DEFAULT.LOCAL.QUEUE"
DISPLAY QUEUE(<@q>)

This will generate the same command. Essentially MQEV looks for a variable between <> characters. If it finds
either a user or system variable between the <> characters then the variable is replaced by the value of the variable.
Note that this substitution will only happen when the command is about to be run. It will not happen in an
assignment as is demonstrated by the following:

@q = "SYSTEM.DEFAULT.LOCAL.QUEUE"
@cmd = "DISPLAY QUEUE(<@q>)"
print @cmd
DISPLAY QUEUE(<@q>)

This means that you can easily insert code fragments containing substitutions.

17.6.1 Functions
There are a number of functions defined which can be used in expressions. For example functions are available for
calculating dates, opening files, finding substrings and many more.

Please refer to 'Expression Functions' on page 230 for the complete list.

In addition you can write your own function. Please refer to Functions on page 202 for more information.

Page 194

MQEV User Guide – Version 9.4.1

17.7 General syntax
Command can be entered anywhere on the line and white space is ignored. So, the following are all valid and
equivalent:

@a=3
@a = 3
 @a = 3;

The last examples shows that an end of statement character is optional. This is really just a matter of style whether
you like to add the semicolons or not. These are end of statement markers. Where they are really useful is if you
want to enter multiple commands on the same line like this.

@a = 3; @b = 4; @c = 5

Here we enter three statements on the same line. In the last one we can omit the end of statement indicator since the
end of the line will essentially do that for us.

17.7.1 Continuation
There are times when we might want to have single statement span a single line. To do this we use the same syntax
as MQSC commands and have a character at the end of the line which indicates 'continuation'. There are two ways
of signifying continuation.

1. If the line ends in a '+'
The following line is concatenated starting at the first non-blank characters

2. If the line ends in a '-'
 The following line is concatenated starting at the first character

17.7.2 Comments
Any line where the first non-blank character is an asterisk '*' is considered a comment.

17.8 Statements

17.8.1 break
The break statement can only be issued from within a loop. The loop can be a while(...) clause, a foritem(....) clause
or a foreach(....) clause. It causes execution to continue at the statement following the end of the current loop.

17.8.2 continue
The continue statement can only be issued from within a loop. The loop can be a while(...) clause, a foritem(....)
clause or a foreach(....) clause. It causes execution to continue at the end of the current loop. Essentially this is a
short-cut way of processing the next iteration of the loop.

Page 195

MQEV User Guide – Version 9.4.1

17.8.3 foreach(....) clause
The foreach(..) clause is the way the responses to a DISPLAY or RESET QSTATS command are processed. The
syntax is as follows:

foreach(<DISPLAY COMMAND>)
 <control statements>
endfor

You can specify any MQSC DISPLAY command or RESET QSTATS command in the brackets immediately
following the foreach word. The command must be a single MQ command. The set of statements between the
foreach(....) clause and the endfor statement will be run for each response from the command server. The statements
will not start processing until all responses have been received from the command server. foreach(....) clauses can
be nested which means that you can query other MQ objects based on the responses you receive from the first
foreach clause.

The MQ command and the responses are not echoed to the screen. However, if you wish to see the commands, say
for debugging purposes, you can display non-echoed lines using the command =show noecho(yes).

There are two other statements, break and continue, which can control the flow of the loop. In addition, if the while
loop is in a function you can use return and goto to break out of the loop. Note that you can use goto to break out of
a loop but you can not use goto to jump in to a loop.

17.8.4 foritem(....) clause
The foritem(....) clause provides a simple way to process a list. A list it just a simple comma separated string.

The syntax is as follows:

foritem(<String>)
 <control statements>
endfor

As an example consider the following:

foritem("a,b,c")
 print _item
endfor

When you run this set of commands MQEV will print out the values “a”, “b” and then “c”. It will run the sequence
for each item in the list and put the current item in the system variable _item. The item will be stripped of any
whitespace characters, such as spaces. For example the statements:

foritem(" a , b , c ")
 print _item
endfor

will yield the same results.

The foritem(...) clause is particularly useful when processing lists in MQ objects. For example, take a look at the
namelist example namelists.mqx.

Page 196

MQEV User Guide – Version 9.4.1

foreach(DISPLAY NAMELIST(*) NAMES)
 foritem(NAMES)
 print _item
 endfor
endfor

This very simple sequence of commands will print out the names contain in all of the defined namelists. Of course
it isn't just namelists that use lists. Channel exits, group names, connection names, channel auth user lists and more
all use lists of values.

There are two other statements, break and continue, which can control the flow of the loop. In addition, if the while
loop is in a function you can use return and goto to break out of the loop. Note that you can use goto to break out of
a loop but you can not use goto to jump in to a loop.

17.8.5 fprint statement
The fprint statement allows data to be written to a file. The statement is the same as the print statement we are
already familiar with except it has an initial parameter which identifies the file to write to. So, suppose we wish to
take the namelists example in the previous section and write the namelist names to a file rather than to the screen.
We could modify the code as follows:

@hf = fopen("c:\temp\namelist.txt","w")
foreach(DISPLAY NAMELIST(*) NAMES)
 foritem(names)
 fprint @hf,_item
 endfor
endfor
fclose(@hf)

You can see that very easily we can generate a file containing whatever MQ objects or values we choose.
Essentially the only changes required are to add a call to the function fopen() to open a file to write to. The fopen
function returns a file identifier which is then passed to all subsequent fprint statements. Once writing to the file is
complete the file is closed with a call to fclose(). Any file handles created will remain open until explicitly closed
by a call to fclose() or until the MQEV program is ended. For a description of the formatting that is available
please see the print statement description.

17.8.6 goto
The goto statement allows you to jump execution to a predefined label. Goto statements can only be used in
functions.The syntax is:

goto <label name>

The label name can be up to 30 characters. It must start with an alphabetic character but this can followed by any
alphanumeric character plus the '.' and '_' characters.

Many proponents of structured programming question the purity of using goto statements since they can make
programs difficult to read and maintain. However, when used sparingly that can greatly simplify coding and
actually improve readability. For example, one of the common uses it have a goto statement which branches to the
end of a function in case of failure.

For example:

Page 197

MQEV User Guide – Version 9.4.1

func foo(x)
 connect()
 if (_lastrc != 0) goto MOD_EXIT; endif
 … …
 … …
label MOD_EXIT;
 ;
endfunc

With a goto statement you can jump either forward or backward in a function. However you can not jump in to
loops. You can jump out of a loop, but not jump in to one.

17.8.7 if(....) clause
The if(...) clause is the control language way of providing conditional execution.

There are two forms of the if(....) clause depending on whether an 'else' clause is required.

if(<Boolean expression>)
 <control statements>
endif

if(<Boolean expression>)
 <control statements>
else
 <control statements>
endif

The boolean expression can be any expression which results in a TRUE or FALSE result. The result is considered
TRUE if the result is non-zero. The following are all valid if clauses:

if (curdepth > 100) Depth of queue greater than some value
if (conname) Connection name is non-blank
if (!(queue == "SYSTEM.*")) Not a system queue
if (exists(@option)) User Variable @option exists
if (findstr(descr,"test")) Has "test" in the description

17.8.8 label
The label statement allows you to define a point that can be jumped to from elsewhere in the function. Labels can
only be defined in functions.

The syntax is:

label <label name>

The label name can be up to 30 characters. It must start with an alphabetic character but this can followed by any
alphanumeric character plus the '.' and '_' characters.

You can have as many labels in a function as you like but you should not define the same label in multiple places.

Page 198

MQEV User Guide – Version 9.4.1

17.8.9 leave
The leave statement causes execution to leave the current file. Control is passed back to the calling code. So,
imagine that you had a control file A which imported another control file B. If a leave statement was executed in
control file B then the next statement executed would be the statement immediately following the the =import
file(B) command in file A.

The leave statement is useful when detecting error conditions and can prevent a large build up of if-then-else type
processing.

The leave statement can not be used in functions. If you wish to return prematurely from a function use the return
statement.

17.8.10 print statement
The print statement is the general way in which you can output data.

The syntax is as follows:

print [:<format string>:] <print item> {,[:<format string>:] <print item> }

Essentially it is a comma separated list of items to be displayed. The items can be anything including strings,
expressions or variables. Before each item you have the option to provide a format string which can provide some
finer control of what is displayed.

The format string can contain:

Value Meaning

Initial Number A number immediately following the first ':' gives the minimum width of this item

'p'<number> A 'p' followed by a number gives the precision of the real number

'l' Item should be left aligned
By default items are aligned according to their type, numerical values are right aligned,
string values are left aligned.

'n' No space before this item

'r' Item should be right aligned
By default items are aligned according to their type, numerical values are right aligned,
string values are left aligned.

's' If added to the last item on the print statement it will suppress the newline.
Nothing will appear on the screen until a print statement which writes a newline is entered.

So, in the tradition that examples are the best way of learning, here are a few:

print "a","b","c" - print out 3 items
print :10:"a",:5:"b",:20:"c" - print out 3 items in columns
print :10:"a",:5r:"b",:20:"c" - as above but right align second column
print "a","b",:n:"c" - no spacing on last item
print 1/7 - print 1/7 th
print :p6:1/7 - print 1/7 th to 6 decimal places

By default each print statement will result in a new line of output. However, the new line can be suppressed using
the 's' formatting flag. Equally a new line can be forced in the print statement by printing the system variable _nl. In
addition a separator line can be printed by printing the system variable _sep.

All of the formatting available for the print statement is also available in the fprint statement.

Page 199

MQEV User Guide – Version 9.4.1

17.8.11 return
The return statement allows either a value to be returned from a function or return from a function to be executed
before reaching its end. The return keyword can be optionally followed by the value that should be returned.

The syntax of the statement is:

return [<expression>]

The expression can resolve to data type. For example, consider the following function:

func plus(a,b)
 return @a+@b;
endfunc

This function, useful really for only demonstration purposes, will return the sum of the two parameters. For
example if both parameters are integers then it would return the integer sum. If both parameters are real numbers
then it would return the real sum. Further if both parameters are strings then it will return the concatenation of the
two strings. This behaviour demonstrates that the type of the parameters and return value are not defined but
handled at run time. Each invocation of the function could use different data types.

A function will always return a value. If function execution reaches the end of the function without reaching a
return statement then the integer 0 will be returned.

17.8.12 var
The var statement allows the programmer to force variables to be defined in the current stack frame. It can only be
used in a function and, traditionally, would be defined at the start of the function although that isn't enforced.

The syntax of the statement is:

var <variable>{,<variable>}

You can therefore define as many variables as you need at the start of your function. For example,

func foo()
 var x, y, z
 … …
 … …
endfunc

Note that arrays are not supported by the var statement.

Although the variables are defined they have no value. Any attempt to use the variables without assigning a value
would result in a runtime 'variable not defined' error. If required you can use the function exists() to check whether
a variable has a value.

Please see Variable Scope and Stack Frames for further information.

Page 200

MQEV User Guide – Version 9.4.1

17.8.13 wait() statement
The purpose of the wait() statement is merely to add a delay in processing.

The syntax of the command is:

wait(<Delay in seconds>)

You must be very careful issuing any form of wait in an MQEV function since it will hold up processing of other
events. If you wish to wait for a certain amount of time for something to happen then you are usually better to use
the mechanism described in Chapter 14.2.3 Script Reminder on page 173.

17.8.14 while(...) clause
The while(...) clause is the statement which is used to run a sequence of commands again and again.

while(<Boolean expression>)
 <control statements>
endwhile

The while(...) clause will loop continuously while ever the Boolean expression evaluates to TRUE. Clearly you
need to be careful with the while() clause to ensure that the program doesn't loop forever unless that is what is
required.

There are two other statements, break and continue, which can control the flow of the loop. In addition, if the while
loop is in a function you can use return and goto to break out of the loop. Note that you can use goto to break out of
a loop but you can not use goto to jump in to a loop.

Page 201

MQEV User Guide – Version 9.4.1

17.9 Functions
Like most other programming languages MQEV supports the definition of user functions. Functions allow the
definition of a group of statements which can be called from anywhere in the program by referring to the function
name. Parameters can be passed to the function if required. The syntax of a function is as follows:

func FunctionName([Parameter [, Parameter])
 … …
 … …
endfunc

17.9.1 Function Basics
There is no restriction on how long a function can be or what statements it contains. Functions can call other
functions and even call themselves (known as recursion). They also always return a value either explicitly using the
return statement or an implicit zero. So an example might be:

func greeting(name)
 print “Hello”,@name
endfunc

greeting(“Mary”);

Here we have a very simple function called 'greeting' being defined and we see a call to it from the main line
program. The function takes a single parameter which it calls 'name'. The values passed from the function
invocation are assigned to these parameter variables when the function is run. This would result in the output:

Hello Mary

If we try to pass too many parameters MQEV will report a syntax error explaining how many parameters are
defined. However, MQEV will always allow us to pass less than the defined number of parameters. This can be
useful if you want the function to accept different numbers of parameters, perhaps for qualification of some kind. If
the function tries to reference a parameter which has not been passed in then it will generate a runtime error. If you
want to check whether a parameter has been passed in you can use the exists() function.

For example, we could modify our function like this:

func greeting(name)
 if (exists(@name))
 print “Hello”,@name;
 else
 print “Who are you?”
 endif
endfunc

Now if we call the function without passing in a parameter the function responds with:

Page 202

MQEV User Guide – Version 9.4.1

Who are you?

Functions also allow you to return a value. So, in this example, we could decide to return the greeting and have the
caller decide how to print it out. So, we would have something like this:

func greeting(name)
 if (exists(@name))
 return “Hello ” + @name;
 else
 return “Who are you?”
 endif
endfunc

print “>”,greeting(“Mary”)

Now if we call the function we get given a string back and we can print it out however we wish:

> Hello Mary

17.9.2 Function Invocation
Functions can be invoked either from an expression or from other functions or an imported command stream.

The only rule that should be followed is that the definition of the function must be registered before a call is made
to the functions.

Calling a function from another function is perfectly straight forward however you must remember the rule above
that the called function should be defined before the function that makes the call. However, there are a couple of
special cases which we will discuss now.

Functions can be defined with up to 20 parameters. These parameters can accept any data type except arrays. An
array can be defined in a function or it can be defined outside the function and referenced within it but you can't
pass an array as an actual parameter.

17.9.2.1 Recursion
Occasionally it can be useful for a function to call itself, this is known as recursion. The classic example that is
often used is to calculate factorial. (I'm not sure why since calculating a factorial would be far more efficient if
done in a while loop.) However, it does demonstrate the principal fairly nicely.....

func fact(n)
 if (@n <= 1) return 1;
 else return @n * fact(@n-1)
 endif
endfunc

So, here we have a very simple function which returns the factorial of the number passed. It achieves this by calling
itself if the number passed is greater than one. So, we can printout out the factorial of a number like this.

print fact(6)

Clearly one of the key things here is to ensure that the stack does unwind sooner or later. It is very easy to create
infinitely recursive loops. When this happens, of course, the program will run out of stack and abnormally
terminate.

Page 203

MQEV User Guide – Version 9.4.1

17.9.2.2 Mutual Recursion
Mutual recursion is very similar to normal recursion but in this case we have two functions that each want to call
each other. So, at first glance you might think that this would do the trick:

func flip(a)
 print "flip",@a
 if (@a > 0) flop(@a-1); endif
endfunc

func flop(a)
 print "flop",@a
 if (@a > 0) flip(@a-1); endif
endfunc

However, this breaks the golden rule that a function needs to be defined before it is used since flip() tries to call
flop() before it has been defined. So, it would seem we are at an impasse. Well, not quite. Remember that you can
define a function as many times as you like and each definition will overwrite the previous one. So, all we need to
do is to make a minimal definition of flop() before we define flip(). It would look something like this :

func flop(a); endfunc

func flip(a)
 print "flip",@a
 if (@a > 0) flop(@a-1); endif
endfunc

func flop(a)
 print "flop",@a
 if (@a > 0) flip(@a-1); endif
endfunc

Now everything works just fine. You can consider the dummy definition of flop() as an indication to MQEV that
there will be a function definition coming later. Some languages refer to this type of thing as a forward definition.

Page 204

MQEV User Guide – Version 9.4.1

17.9.3 Dynamic Execution
Sometimes it is useful to define a function that operates largely the same on each invocation but its behaviour can
be modified dynamically depending on the input parameters. For example in C one might pass in a function pointer
that has the desired dynamic behaviour. MQEV does not have function pointers, it doesn't have pointers at all,
However it can achieve a very similar effect using the 'eval' function. The eval function is a very useful function, it
will evaluate any given expression. This expression can be anything, including an invocation of a function.

Consider the following function:

* *
* FUNCTION: WaitForState *
* Wait for a specific state to occur *
* *
* - If you don't supply the number of iterations to loop round waiting*
* for the channel to be running, then it will try it up to 10 times.*
* *

func WaitForState(Command, Expression, Iterations)
 var rc; @rc = 0

 if (!exists(@Iterations)) @Iterations = 10; endif

 while (1)
 if (_idxWhile > @Iterations) @rc = -1; goto MOD_EXIT; endif
 wait(2)
 <@Command>
 if (eval(@Expression)) goto MOD_EXIT; endif
 endwhile
label MOD_EXIT
 return @rc
endfunc

This function uses a number of concepts but there are two things to notice.

• The use of substitution command to issue a command that is passed in
• The use of the eval() function to check the result of the command.

These two features means that this function is very dynamic. So, what would we use this function for? Well
suppose we need a script that started a channel. We might well want to wait until the channel was running before
continuing. We could now write something like this:

 START CHANNEL(<@ChannelName>)

 @rc = WaitForState(“DISPLAY CHSTATUS(<@ChannelName>)", "_matches > 0")

It should be clear that the exact behaviour of the function can be changed enormously just by changing the
Command and Expression parameters. The function can now be used for all sorts of things where you need to wait
for some state in MQ to change.

Of course the concept of dynamic execution doesn't have to involve an MQ command, that is just an example of its
use. The key thing is that a parameter can be passed to the eval() function. Since the eval() function will evaluate
the expression, including calling functions, we now have a way of effectively passing a function pointer into a
function.

Page 205

MQEV User Guide – Version 9.4.1

17.9.4 Comments
In most of the examples throughout this manual we have not included comments. Ironically this is for clarity so you
can concentrate on the actual instructions rather than any additional descriptions we may have provided. After all,
the text in this document describes the code. However, when you are writing MQEV scripts we hope that you make
liberal use of comments. In any programming language it is good practice to describe what is happening to make
the code more maintainable. Think of the standard joke.....

Press Reporter: “ What is the definition of bad programming? ”
Programmer : “ No comment ”

However, consider the following:

* MQEV Example code written by Paul Clarke
* taken from the MQEV manual

* Function : foo
* Purpose : Demonstrates the passing of optional parameters
func foo(name)
 if (exists(@name))
 print “Hello”,@name;
 else
 print “Who are you?”
 endif
endfunc

Clearly any comments defined between the func and endfunc statements belong to the function foo() but it is
common coding practice to put the description of the function immediately before the function definition, rather
than inside it. MQEV will associate immediately preceding comments as also part of the function.

The method used by MQEV is that all comments up to the second blank line will be include as part of the function
definition.

 < Second blank line is function delimiter nothing prior to this included>
* Block comments included
* Block comments included

 < First set of optional blank lines included in function >

func foo(name)
 … …
endfunc

Page 206

MQEV User Guide – Version 9.4.1

18 Debugging
As the script functions become more complicated it can be very useful to have some way of debugging your code.
Perhaps the simplest form of debugging mechanism is trace. You could, for example, print out values to the screen
or the log file when certain events happen. However, this can take a lot of time and is often unsatisfactory so
MQEV also allows you to run your scripts in debug mode.

18.1 Debugger
There are two ways to go into debug mode, both of which require that you run MQEV in the foreground in a
command window. If MQEV is already running then you can enter '!' on the status line. MQEV will then pause for
instructions the next time any of the script is run. However, the normal way to enter debugging mode is to do it
when MQEV is started. To run MQEV in debug mode you merely need to add a -! parameter such as the
following:

mqev -!

This command will respond with something such as the following:

MQEV Version:9.1.0 (64 Bit) Build Date:Nov 22 2019

MQEV Initialising...
Loading MQSCX Script...
CMD: 1 > _error_func = "Error"
DBG>

There are two things to note here.

1. The line starting CMD: shows the current command we are about to execute
2. We have a prompt DBG> which is clearly waiting for us to do something

Of course your script might well have a different first line. You can ask to see a bit more of the script that is about
to execute by entering the command 'l' (short for list). So, try entering 'l' at the prompt.

You should see that the program looks very similar to what we would see if we opened the mqev.mqx file in an
editor. However, there can be differences so you should not assume that the format of the display is exactly the
same as the input. We will discuss this soon but for now just see the list as a sequence of statements that MQEV is
going to run. The keen eyed amongst you will have noticed two things:

1. One of the lines has a > on it
This is the same line as we were shown initially. Showing, perhaps not surprisingly that this is still the
current line and the next one that will be run.

2. Only some of the lines are shown and the script file has many more lines
The debugger will only show the current code segment is it in. It will not, for example, show the contents
of functions unless it is currently in that function. If you really wish to see the functions you can issue the
command l func to see the functions defined and a command such as l func MQEVEvent * to display
the contents of one of those functions.

So, I mentioned that the debug list format and the actual file format may not be the same. If you issued the 'l *'
command you may already have seen it. The most noticeable example of this are multiple commands on a single
lines. For example, suppose you had a line in your script such as the following:

Page 207

MQEV User Guide – Version 9.4.1

if (_height) @limit = _height-3; else @limit = 20; endif

This line actually contains multiple statements. If MQEV reported the line exactly as it is then it would make some
things awkward34. For example consider the list output:

CMD: 9 > if (_height) @limit = _height-3; else @limit = 20; endif

MQEV can tell us that it's about to run one of these statements but we wouldn't know which one. Later on we'll see
that MQEV also allows us to set breakpoints and having multiple statements on a single line makes that awkward
too. So, instead of listing the commands on a single line MQEV will split them into multiple lines like this:

CMD: 9 if (_height)
CMD: 10 @limit = _height-3
CMD: 11 else
CMD: 12 @limit = 20
CMD: 13 endif

This makes things much easier since each separate statement has a separate line. It is always clear which line
MQEV is about to run and each statement can be identified uniquely for, say, setting breakpoints. In general you
should not have to worry about this distinction, just bear in mind that the statement numbers you see are not line
numbers in the file but rather just global statement number and serve only to allow you to easily identity a
statement. Another clue to this behaviour is that comment and blank lines do not even get a line number. These
lines are logically part of the following statement. In actual fact it is possible, since MQEV allows you to
dynamically modify and include code, that the line number assigned to a particular statement could change during
the running of the file.

However, the key thing you probably want to know is what commands you can issue at the debug command line.
By all means try a few in the example we are currently running.

18.1.1 <Enter>
The the simplest 'command' you can enter is nothing, ie. Just press enter at the prompt. The debugger will run the
current command, display any output and then pause on the next command. Repeatedly pressing enter will
effectively step through the program one command at a time.

18.1.2 print
At any time you may be curious of the value of a variable or expression. You can issue a print command to have the
values displayed. For example:

print @i, queue, _time, sqrt(100)*3

This example shows us printing a user variable, a response variable, a system variable and an expression. The
debug print command will use the current debugger stack frame. For more information on this please refer to the
'sf' command on page 212.

34 Those of you familiar with other source level debuggers will be familiar with this problem. How many times have we had
to change the program and recompile just so we can set a breakpoint on a multi-line statement ?

Page 208

MQEV User Guide – Version 9.4.1

18.1.3 eval
The are times when you just want to see what the current command will evaluate to before you run it. If the current
statement is a while() statement, an if () statement or an assignment then entering the command 'eval' will evaluate
the current statement and display the result. For example:

CMD: 32 @value = 3+5
DBG>eval
Result:'8'

There may be times where you may wish to evaluate another expression altogether. In this case you can just follow
the keyword 'eval' with the expression you wish to evaluate.

DBG>eval 6*7
Result:'42'

The expression can contain user variables, system variables and function calls if you wish. For example:

DBG>eval @a + @b
Result:'134'

Of course it is entirely possible that you have more than one variable @a in the program. If you are inside a
function it is possible that there is both a local variable @a that belongs to the function and another variable @a
that is in the main program. In fact, if you have a stack of function calls then there could be a myriad of @a
variables. So, how does MQEV know which @a to use in the evaluation ?

Well, the debugger has a 'current' stack frame. A stack frame is what dictates the current scope of variables. Take a
look at 'Variable Scope and Stack Frames' on page 189 for more information. By default the debugger will use the
current stack frame for its evaluation. However, you can use the 'sf' command to change it to the stack frame you
want.

18.1.4 Assignment
Sometimes it is useful to be able to change values of user variables. You can, therefore, enter an assignment directly
at the debug line. You can either change existing variables or define new ones.

DBG>print @value
10
DBG>@value = 20
DBG>print @value
20

Assignment will use the current debugger stack frame. For more information on this please refer to the 'sf'
command on page 212.

Page 209

MQEV User Guide – Version 9.4.1

18.1.5 list (short-form 'l')
The list command will list the command source. There are a number of different variants of the command allowing
the user to display different portions of the command list.

Command Meaning

list List a few source lines around the current position

list 10 List 10 lines around the current position

list @3,10 List 10 lines starting at statement 3

list @3,@20 List from statement 3 to statement 20

list * List all source lines

list + List the next few statements starting at the last list position

list +,10 List the next 10 lines starting at the last list position

list - List the previous few statements starting at the last list position

list -,10 List the previous 10 lines starting at the last list position

list func List out the defined functions

list func test List out some of the function test

list func test * List out all of function test

list func test @3,@8 List out function test from statement 3 to statement 8

Note that statements are not the same as lines. This is because blank lines and comments are not given statement
numbers. The advantage of this is that the list output is far more readable since only actual statements are given
numbers. It also means that when a statement line is output it's preceding comment line(s) are also output.

18.1.6 llist (short-form 'll')
The llist command accepts the same parameters as the list command, the only difference is that the llist command
will output the file line numbers in addition to the global line number.

18.1.7 where
The where command will display the current command and it's line numbers and potentially some context about
where in the set of command you are. For example, you could have the following response.

DBG>where
Line: 8 [0]+CMD: 3 foreach(DIS QL(*) CURDEPTH WHERE(CURDEPTH GT 0)
Line: 10 [0]+CMD: 5!> @val[1,@i] = QUEUE

Notice that the file line number as well as the statement number is displayed. In this example you can see that we
are currently on line 10 at statement 5. The where command also tells us the loops that we are currently in, so in
this case we are processing the foreach loop on line 8. If we were inside an imported file the where command will
also give us the name of the file and place at which the lines were imported.

The where command also shows us the stack frames associated with each statement (eg,[0]) and it shows us
which stack frame is currently active. This is signified by the plus (+) sign immediately following the stack frame
number.

Page 210

MQEV User Guide – Version 9.4.1

18.1.8 Breakpoints
MQEV allows the user to set a breakpoint on any execution line. You may set up to 10 breakpoints at any one time.
There are three commands which allow you to manage the breakpoints in the program.

18.1.8.1 bl
This command will list the current breakpoints. Lines with breakpoints will also be shown with an exclamation
mark '!' next to the command when it is displayed using the list command.

18.1.8.2 bp
Set a break point. The command can be used a number of ways.

• To set a break point in the main line code
bp <Statement Number>

• To set a break point at start of a function
bp <function name>

• To set a break point at a statement in a function
bp <function name> <Statement Number>

If you attempt to set a breakpoint on an invalid line MQEV will try to set a breakpoint on the next execution line.
At any one time there can be up to 10 breakpoints set in the program.

18.1.8.3 bc
Clear break point. The command can be used a number of ways.

• To clear a break point in the main line code
bc <Statement Number>

• To clear the break point at start of a function
bc <function name>

• To clear a break point at a statement in a function
bc <function name> <Statement Number>

Note that a command line may not have the same statement number for the entire life of the program. As files are
imported or command inserts occur the exact position of a line may change. Consequently it is entirely possible
that to clear a breakpoint you must enter a different statement number than was used to set the breakpoint.

18.1.9 end
The end command can be used to terminate the command file. The MQEV program will end without running any
further commands.

18.1.10 run
The run command instructs MQEV to run the commands either until the next breakpoint or until the end. If there
are no current breakpoints then debug mode is essentially ended and MQEV will go back to the status line display.
You can re-enter debug mode by entering '!' on the status line. MQEV will then stop at the next script line that is
about to be run.

Page 211

MQEV User Guide – Version 9.4.1

18.1.11 runout
The runout command is essentially a shorthand way of setting a breakpoint after the end of the current loop, issuing
the command run, and then clearing the breakpoint. It is useful if you have confirmed the processing of one
iteration of the loop and want to continue debugging on the statements following the loop.

18.1.12 sf
By default the current stack frame is used for evaluations but this command can be used to override it temporarily.
Please see 'Variable Scope and Stack Frames' on page 189 for a description of stack frames.

The syntax of the command is:

sf <stack frame number>

Stack frames are numbered consecutively from 0 depending on how many levels of stack you are in. For example,
if we were debugging the factorial function described in the section on 'Recursion' on page 203 we could issue the
where command and be shown something like this.

DBG>where
Line: 7 [0] CMD: 1 print fact(6)
Line: 3 [1] FNC: 5 return @n * fact(@n-1)
Line: 3 [2] FNC: 5 return @n * fact(@n-1)
Line: 3 [3] FNC: 5 return @n * fact(@n-1)
Line: 3 [4] FNC: 5 return @n * fact(@n-1)
Line: 1 [5]+FNC: 1 > func fact(n)

The where command shows where program execution is right now. It essentially shows the stack. In the example
above you can see that we are nested a few levels deep in the calls to function fact(). The where command output
shows the stack frame after the line number as something like [2]. You can see that as each function call is made the
stack frame number increases. The stack frame the debugger is currently using is signified by it being followed by a
plus '+' sign. So, if we issued a debug command like print @a we would see the value of @a in stack frame 5.

DBG>print @n
2

However, suppose we are interested in the value of @a at the first invocation. That is where the sf command comes
in. Now we enter the sequence.

DBG>sf 1
DBG>print @n
6

If we now issued the where command we would see

Page 212

MQEV User Guide – Version 9.4.1

DBG>where
Line: 7 [0] CMD: 1 print fact(6)
Line: 3 [1]+FNC: 5 return @n * fact(@n-1)
Line: 3 [2] FNC: 5 return @n * fact(@n-1)
Line: 3 [3] FNC: 5 return @n * fact(@n-1)
Line: 3 [4] FNC: 5 return @n * fact(@n-1)
Line: 1 [5] FNC: 1 > func fact(n)

You can see that the plus (+) sign now indicates that the debugger stack frame is now set the 1. Note that the
current command is still the same as it always was and execution of the program is not affected by the sf command.
The sf command only affects commands entered in the debugger such as eval, print and assigning values to
variables. As soon as you execute any of the actual program lines the stack frames reverts back to the actual stack
frame in use by the program.

18.1.13 Help (short-form ?)
The help command provide a quick memory jogger of the debug commands which are available. There are two
forms of the command, either just on it's own or with the command you want help on.

help

The command issued on its own will just show a simple list of the commands available. If you optionally follow
the word 'help' (or indeed ?) with the name a command then a description of that command will be shown. For
example:

help list

18.1.14 Command alteration
The debugger does not currently allow you either insert or delete command in the command stream. However, there
is an occasion where you can change the commands run. Consider the following short program:

CMD: 1 @mycmds = “print 3*4”
CMD: 2 @mycmds

In this case MQEV will run whatever commands are contained in the user variable @mycmds. It follows therefore
that you set a breakpoint on line 2 and then change the values of @mycmds you could essentially insert commands
into the command stream.

Page 213

MQEV User Guide – Version 9.4.1

19 Data Management
As MQEV receives the event and accounting data it will compress the data (please see 'Compression' on page 8)
but the data still has to go somewhere and so we need to consider that and have ways of dealing with it. First of all,
how much data are we talking about? Well, this is a hard question to answer since the size and frequency of event
data will vary enormously by installation. A reasonable average message size to assume, once compressed, is 300
bytes. Let's say a queue manager generates about 5,000 events a day35. That would mean we need to store about 1.5
MB per day. Let's say we wish to store this data for six months that would mean we need to store around 270 MB
of information. By modern standards that is a rather small amount of data and it is likely our estimates are on the
high side. However, this is only a rough guide, there could be many reasons why the actual number is different:

• What events are we choosing to store?
5,000 events a day may seem like a lot but it depends on what events you are choosing to store. For
example, suppose you choose to store command events. Furthermore suppose you choose to store
DISPLAY commands. All of a sudden 5,000 is not looking quite so big, especially if you have some of
those monitoring products who are regularly issuing various display commands. By default DISPLAY
commands are not stored since they are pretty innocuous. However, if you do choose to store them then
consider whether you really need to store them for very long. It may be worth considering sending
DISPLAY commands to their own stream with small retention interval.

• We might want to store the data for multiple queue managers
MQEV is quite capable of receiving events from any number of queue managers. All you have to do is
'point' your event queues at a queue that MQEV is reading and it will store the events, neatly separated by
queue manager name.

Generally speaking this is not recommended since it means that in order for MQEV to receive events you
need to have networks and channels running etc. This could impinge on the reliability of your event
processing. However, in some circumstances it may be preferable to run one central MQEV rather than
have a set of separate processes. However, there is a limit to this behaviour. You could not, for example,
expect one central MQEV process to handle all the events from, say, a thousand different queue managers.
Like anything else, you need to be sensible in your topology.

• We might decide to store the data for a lot longer
The default retention interval for streams is 90 days. This means that events will be discarded after about 3
months. In our example above we have extended this to 6 months but suppose you decided to keep your
event data for 5 years. Well, this can have a significant effect on the amount of data you are storing. If you
really choose to do this then you may wish to consider which events are really important. For example, as
we discussed above, storing DISPLAY commands for 5 years seems unnecessary.

• We may get occasional floods of events
It is possible to get a flood of events, for example when a network goes down. Or perhaps if you have a
misbehaved application. Hopefully these are rare events but some installations have to cope with dodgy
networks and many more have to contend with dodgy programmers! So how do we minimise this impact.
The answer is 'Event Storms'. You can configure MQEV to combine lots of similar events received in a
short interval into a single event.

35 We are trying to estimate on the high side

Page 214

MQEV User Guide – Version 9.4.1

• What types of data do you wish to store?
So far we have just considered MQ Events. However, MQEV can also store your statistics and accounting
messages. Statistics messages are fairly well controlled in that you get a fairly predictable arrival rate of the
messages and you know how many objects you have so you can fairly easily work out the maximum
number of messages of this type you might get. However, Accounting messages are more tricky. If you
have very short lived Applications then you may get a high rate of accounting messages – at least one
message for each short lived connection. For large numbers of applications and short lived connections this
can lead to a large amount of data. Again it comes down to how long is this data relevant. It can be
extremely useful to be able to look at this data over the period of say a week or even a month but you need
to consider whether it is really worth keeping the data much longer than that. Another alternative is to
consider aggregation, see below.

• Should the data be aggregated?
For a full description of this topic please see Chapter 6 Aggregation on page 39. Briefly though it is the
concept that it is often not necessary to store every Accounting and Statistics messages but rather you are
interested in what happened but not necessarily exactly when it happened. Consider Accounting
information. IBM MQ will send you Accounting information for every connection when the application
disconnects. For short lived connections this can give rise to a huge amount of data received. However, you
may only be interested in what happened each minute, or perhaps each hour. By aggregation the data to
these intervals you can very significantly reduce the amount of data you need to store while not necessarily
significantly reducing the usefulness of the data. It matters that you know that 1,000 messages were put by
Application X to queue Y but you don't need to know the exact second they did it.

Another thing aggregation can allow you to do is reduce the amount of time you store all the data. Suppose
you want to keep Accounting information for trend analysis so you want to keep it for 6 months. However,
you also want a resolution of 1 second to help with problem diagnosis. How do we satisfy both criteria
without storing an enormous amount of data? The answer is to put the data to two streams. One with no
aggregation but a retention of 1 week. The other with an aggregation of, let's say, 1 hour, but a retention
interval of 6 months. So now we can view the different streams depending on the view we want of the data.

If all else fails we may have to manually discard events. This could be, perhaps, because we have received some
erroneous data which is has created a stream which we shouldn't have. The command we would issue would be:

PURGE EVSTRM(BADSTREAM) [EVQMGR(MYQM)]

This will discard all data from a stream. If required you can qualify the stream by queue manager so that only data
from certain queue manager(s) are discarded.

Remember that the script functions allow you to separate the data into as many streams as you wish. Each stream
can be given a different retention interval. So, it should be fairly straightforward to configure MQEV to store only
the relevant data for long periods of time.

Page 215

MQEV User Guide – Version 9.4.1

20 Operational Characteristics

20.1 Message Consolidation
So far we have mentioned in general terms that the event data is stored on the MQGEM.MQEV.DATA.QUEUE but very
little information about how that is done. Generally speaking, of course, the user of MQEV does not need to know.
However, the curious amongst you may be looking at the queue and wondering what is going on so here is a brief
explanation of how the data is stored.

Event data is stored in unique streams. Each stream has a key which is 'Queue Manager Name' and 'Stream Name'
and Stream Type. Events for different queue managers, different streams and/or different stream types will
therefore never exist in the same MQ message. When events are placed into MQ messages it is done in three
(possibly four) stages. There are, therefore, four types of MQ message for each stream and the data passes from one
message chronologically in the following order.

• Aggregation Message
If aggregation is active for the stream then each active interval will have at least one aggregation message
on the queue. These messages will be updated as each new piece of data is added to the interval. When the
aggregation interval expires the data is migrated to the primary message.

It follows though that each stream may have anywhere between zero and hundreds of aggregation
messages. It is entirely normal to see the depth of the data queue fluctuate significantly if aggregation is
active, especially with small aggregation intervals on a very active Queue Manager.

• Primary Message
The primary message of each stream contains the stream header and the latest (most recent) set of event
data. The primary message is up to 10K bytes. There can be at most one of these.

• Small Message
When the primary message becomes full it is copied to a 'small message'. A small message is up to 10K
bytes. There can be up to 100 of these.

• Large Message
When we have 100 small messages they are consolidated into a single large message. Large messages can
be up to 1MB. There is no limit on the number of possible large messages.

This could be shown pictorially like the diagram below:

Page 216

MQEV User Guide – Version 9.4.1

20.2 Message Retention
The event messages are stored in 'streams'. Each stream has a configurable retention interval which defaults to
either 90 or 45 days depending on the type of record stored on the stream (events, accounting or statistics). This can
be increased or reduced as required. However, the intention is that all streams should have a finite retention period.
Beyond this point the data is considered irrelevant or at least there is little point storing it in a direct access program
like MQEV. Instead, if you really do wish to keep this data indefinitely then you should consider archiving the
event data to another queue, or possibly offloaded to a file. If you plan to do this then you may wish to store the
original data as explained below.

20.3 Time zones
Accounting and Statistics messages contain data within them which records dates and times. Specifically, every
accounting and statistics message contains four fields, Interval Start Date/Time and Interval End Date/Time.
These fields are reported in the queue manager's local time. This means that if you move these messages to a
machine in a different time zone, the context of the time zone of these fields will be lost. It is therefore inadvisable
to funnel accounting and statistics to a central collection queue manager. This funnelling pattern is useful and
common with event messages, but not suitable for accounting and statistics.

Page 217

MQEV User Guide – Version 9.4.1

As a result of this it is also essential that the MQEV program runs on a machine in the same time- one as the queue
manager if it is processing accounting and statistics messages. If MQEV is running with a bindings connection to
the queue manager then all is well. However, if it is running as a client connecting to the queue manager on another
machine, then the client machine and the queue manager machine need to be on the same time zone in order for the
dates and times inside accounting and statistics messages to be correctly interpreted.

20.4 Original Event Data
Because of the mechanisms used in the message compression employed by MQEV it is not possible to get back to
exactly the same data that was received from IBM MQ. MQEV will store the relevant fields but will not store
everything. For example, no attempt is made to store the MQMD which came along with the event data. If you
have need to store the event data long term then you may wish to consider using the daisy chaining mechanism in
the EVQ objects to forward the event data to another queue which can then either be archived or stored to a file.
This way you know that you have exactly the data that was issued by IBM MQ.

20.4.1 Daisy chaining
Daisy chaining is a pattern whereby messages consumed by an application are first forwarded to another
application's input queue, unchanged, prior to being processed. It is a common pattern when consuming event
messages, since originally IBM MQ only produced one event message for any particular notification. In modern
versions of IBM MQ it is of course possible to have your event messages published to multiple queues, but none-
the-less, daisy chaining is still a useful feature.

To use daisy chaining for any particular queue that is being processed by MQEV, set the FWDQ attribute to the name
of the queue where a copy of the message should be sent. Event messages are created by the queue manager using
default persistence, and you can therefore control the persistence of event messages by altering the DEFPSIST
attribute of an IBM MQ event queue definition. You can also independently control the persistence of the
forwarded copies of these messages using the FWDPSIST attribute. The FWDQ and FWDPSIST attributes can be
found on the ADD EVQ and MQEV commands.

20.5 IBM MQ Configuration
Clearly, as an IBM MQ application, there are certain MQ settings which are needed in order for MQEV to operate
successfully. We have already discussed that MQEV needs the two queues, MQGEM.MQEV.DATA.QUEUE36 and
MQGEM.MQEV.COMMAND.QUEUE and considered their attributes so we will not repeat ourselves.

Here we concern ourselves more with the queue manager properties of IBM MQ.

Attribute Description Recommended Minimum

MAXUMSGS Queue Manager attribute which controls the maximum size of a
transaction.

10,000 200

MAXHANDS Queue Manager attribute which controls how many queues can be
opened by a process. Must be sufficient to open all the events queues
plus the two standard queues.

256 As required

MAXMSGL Queue Manager attribute controlling how large messages can be. 4,194,304 2,097,152

*EV Event attributes enabled accordingly ENABLED N/A

36 Or a Persistence Queue of the name of the monitored queue manager if you are using a State Queue Manager.

Page 218

MQEV User Guide – Version 9.4.1

21 Security

MQEV is an MQI application, it is written in 'C' and uses the standard MQI to interface with IBM MQ. It does not
use any private interfaces into IBM MQ. As such it is subject to exactly the same security mechanisms as any other
MQ program.

21.1 Authorities needed by the MQEV program
One mode of running MQEV is to run as a privileged user, for example if you run it as a SERVICE. However you
you may choose to run MQEV under a non-mqm user id, in which case at least the following authorities will be
required.

In addition to the authorities required on the various queues, we recommend creating a topic object as follows in
order to set authorisations for the specific topic string used by MQEV.

DEFINE TOPIC('MQGEM.MQEV.ALERTS') TOPICSTR('MQGem/MQEV/Alerts')
DESCR('Topic Object for MQEV Alert publications')

In addition to the commands shown below, if you intend to issue IBM MQ commands from inside the mqev.mqx
script functions, authorities to allow MQEV to issue those commands will be needed. Also, if you allow MQEV to
use a Dead-letter queue, authorisation to put to that queue will be required. This can be the queue manager's central
DLQ or an MQEV specific DLQ - see ALTER EV on page 71 for details.

21.1.1 Example security commands for Distributed Platforms
It is assumed in the following examples that the user id under which the MQEV program is running is in a group
named mqevapp.

SET AUTHREC OBJTYPE(QMGR) GROUP('mqevapp') AUTHADD(CONNECT,INQ,DSP,ALTUSR)
SET AUTHREC PROFILE('MQGEM.MQEV.COMMAND.QUEUE') OBJTYPE(QUEUE) GROUP('mqevapp') AUTHADD(GET,INQ,PUT)
SET AUTHREC PROFILE('MQGEM.MQEV.DATA.QUEUE') OBJTYPE(QUEUE) GROUP('mqevapp') AUTHADD(GET,BROWSE,PUT,INQ)
SET AUTHREC PROFILE('SYSTEM.ADMIN.COMMAND.QUEUE') OBJTYPE(QUEUE) GROUP('mqevapp') AUTHADD(PUT)
SET AUTHREC PROFILE('SYSTEM.DEFAULT.MODEL.QUEUE') OBJTYPE(QUEUE) GROUP('mqevapp') AUTHADD(GET,DSP,PUT)
SET AUTHREC PROFILE('MQGEM.MQEV.ALERTS') OBJTYPE(TOPIC) GROUP('mqevapp') AUTHADD(PUB)

In addition to the above, we also need to grant MQEV access to each of the event, accounting and statistics queues.
One example is shown below, but all queues to be monitored will need to have the same access.

SET AUTHREC PROFILE('SYSTEM.ADMIN.QMGR.EVENT') OBJTYPE(QUEUE) GROUP('mqevapp') AUTHADD(GET,INQ)

MQEV needs authority to put the responses to commands it is asked by applications such as MQSCX and MO71.
If you use a different MODEL queue for these tools, i.e. not SYSTEM.DEFAULT.MODEL.QUEUE, then the following
authorities will be required.

SET AUTHREC PROFILE('MQSCX.**') OBJTYPE(QUEUE) GROUP('mqevapp') AUTHADD(PUT)
SET AUTHREC PROFILE('MQMON.**') OBJTYPE(QUEUE) GROUP('mqevapp') AUTHADD(PUT)

21.1.2 Example security commands for z/OS (using RACF)
It is assumed in the following examples, that the user id under which the MQEV program is running is in a group
named MQEVAPP. It is also assumed that all the classes in use below are active on the system through the necessary
switch profiles, and that the profiles used have already been RDEFINE-d.

PERMIT qmgr.BATCH CLASS(MQCONN) ID(MQEVAPP) ACCESS(READ)
PERMIT qmgr.ALTERNATE.USER.** CLASS(MQADMIN) ID(MQEVAPP) ACCESS(UPDATE)
PERMIT qmgr.MQGEM.MQEV.COMMAND.QUEUE CLASS(MQQUEUE) ID(MQEVAPP) ACCESS(UPDATE)
PERMIT qmgr.MQGEM.MQEV.DATA.QUEUE CLASS(MQQUEUE) ID(MQEVAPP) ACCESS(UPDATE)
PERMIT qmgr.SYSTEM.ADMIN.COMMAND.QUEUE CLASS(MQQUEUE) ID(MQEVAPP) ACCESS(UPDATE)
PERMIT qmgr.SYSTEM.DEFAULT.MODEL.QUEUE CLASS(MQQUEUE) ID(MQEVAPP) ACCESS(UPDATE)
PERMIT qmgr.MQEV.** CLASS(MQQUEUE) ID(MQEVAPP) ACCESS(UPDATE)
PERMIT qmgr.PUBLISH.MQGEM.MQEV.ALERTS CLASS(MXTOPIC) ID(MQEVAPP) ACCESS(UPDATE)

Page 219

MQEV User Guide – Version 9.4.1

In addition to the above, we also need to grant MQEV access to each of the event queues. One example is shown
below, but all queues to be monitored will need to have the same access.

PERMIT qmgr.SYSTEM.ADMIN.QMGR.EVENT CLASS(MQQUEUE) ID(MQEVAPP) ACCESS(UPDATE)

MQEV needs authority to put the responses to commands it is asked by applications such as MQSCX and MO71.
The following authorities will be required.

PERMIT qmgr.MQSCX.** CLASS(MQQUEUE) ID(MQEVAPP) ACCESS(UPDATE)
PERMIT qmgr.MQMON.** CLASS(MQQUEUE) ID(MQEVAPP) ACCESS(UPDATE)

21.2 Authorities needed by users of MQEV
For issuing MQEV commands, there are two classes of user.

MQEV Users These users can issue any MQEV DISPLAY command. This is implicit. If the user has the
ability to put to the MQGEM.MQEV.COMMAND.QUEUE command queue it is assumed, by MQEV,
that they are entitled to issue a DISPLAY command.

MQEV
Administrators

These users can issue any MQEV command. If a non-DISPLAY command is issued then
MQEV will check that the user has MQSET authority on the MQGEM.MQEV.COMMAND.QUEUE.
If this check fails then the command will fail with a security error.

Users who need to issue MQEV commands can use tools such as MQSCX or MO71. These tools require some
minimum authorities in order to connect, put a command and get a reply. See the specific user guide for full details.

Users who need to issue MQEV commands should, in addition to the above, be given PUT access to the
MQGEM.MQEV.COMMAND.QUEUE queue as shown in the examples that follow.

For full access to all MQEV commands, not just DISPLAY commands, users who have need to use these
commands, for example to configure MQEV, will need additional authority as shown in the examples that follow.

21.2.1 Example security commands for Distributed Platforms

In the command that follows, it is assumed that the user ids which require access to issue MQEV DISPLAY
commands are in a group named mqevusers.

SET AUTHREC PROFILE('MQGEM.MQEV.COMMAND.QUEUE') OBJTYPE(QUEUE) GROUP('mqevusers') AUTHADD(PUT)

In the command that follows, it is assumed that the user ids which require access to configure MQEV with non-
DISPLAY commands are in the mqevusers group above and additionally in the mqevadmins group used below.

SET AUTHREC PROFILE('MQGEM.MQEV.COMMAND.QUEUE') OBJTYPE(QUEUE) GROUP('mqevadmins') AUTHADD(SET)

21.2.2 Example security commands for z/OS (using RACF)

In the command that follows, it is assumed that the user ids which require access to issue MQEV DISPLAY
commands are in a group named MQEVUSR.

PERMIT qmgr.MQGEM.MQEV.COMMAND.QUEUE CLASS(MQQUEUE) ID(MQEVUSR) ACCESS(UPDATE)

In the command that follows, it is assumed that the user ids which require access to configure MQEV with non-
DISPLAY commands are in the MQEVUSR group above and additionally in the MQEVADM group used below.

PERMIT qmgr.MQGEM.MQEV.COMMAND.QUEUE CLASS(MQQUEUE) ID(MQEVADM) ACCESS(ALTER)

Page 220

MQEV User Guide – Version 9.4.1

22 Trouble Shooting
It is never easy to write a trouble shooting section since there are clearly many things that can go wrong. In our
experience the vast majority of the time it is a configuration error. The tricky bit is finding it. If you find that
MQEV is not collecting or displaying your events then re-check the configuration and parameters you are passing.
There are some simple debugging flags that may help. Starting MQEV with something like:

mqev -vpP

will cause it print out a summary of the event messages it is receiving. Other verbose options can help in other
circumstances.

If your situation is not covered in the FAQ then please do raise a question with Support, details of how to do this
are given in 22.2 Support on page 224.

22.1 Frequently Asked Questions

22.1.1 My MQEV runs in the background, how do I know what it's doing?
MQEV is designed to run in the background. There are a number of status commands to show how many messages
it has processed, and the resources (memory and data queue messages) are in use. It will also output its activity to a
log file which by default is found in the same directory as the program, but which can be directed to an appropriate
location by using the -L flag when running the MQEV program. See Chapter 4 Parameters on page 32.

22.1.2 Why does MQEV not delete all my log files?
MQEV can be configured with a retention interval for the log files generated during the life of a particular MQEV
process. However, MQEV will not delete the files generated by other MQEV processes. This is to allow the user to
inspect the contents of those files, for example in the case where the program ends unexpectedly.

It is recommended that you start MQEV using a script file that initially deletes all the MQEVLog*.txt files in the
log directory, so that you start with a clean slate on each run (except in the case where you have something to look
into of course!).

22.1.3 Why does MQSCX complain that my commands are invalid?
Remember that you need to be in =mqev mode in order to send commands to the MQEV command server, and in
=mqsc mode to send commands to IBM MQ. If you regularly forget which mode you are in, consider updating
your MQSCX prompt to make it clear.

22.1.4 Why do the MQEV menus not appear in MO71?
This would be most likely because MO71 has not yet seen that your queue manager has a queue called
MQGEM.MQEV.COMMAND.QUEUE. Refreshing the objects for the queue manager in question should resolve this
problem. Alternatively, explicitly tick the “MQEV commands” check box in the Options menu on the location
dialog.

22.1.5 Why does my alert disappear?
When creating an alert you can specify a retention interval. If you do not specify one, the default value from the EV
object will be used. If you do specify one, remember that the value you provide is measured in seconds. This is
described further in 14.3 Alert Retention on page 175.

Page 221

MQEV User Guide – Version 9.4.1

22.1.6 Why can't I see the events I know have been generated?
Check the following:-

• Is the event queue being processed by MQEV? Use the RESUME EVQ command to ensure it is.

• Was the event more than 24 hours ago? By default the DISPLAY commands will only show the last 24
hours worth of activity. To display older data than this, add a parameter such as FROM(-5days) to the
command.

• Ensure that MQEV is running in the same time zone as the queue manager generating the events.

• If the event you can't see is a command event recording a DISPLAY command, check the value of the
DISPCMDS attribute on the EV definition.

• Ensure that the event in question is not being discarded by your scripts - by setting _stream = "$null"

22.1.7 Why don't my scripts work?
Check the following:-

• Accessing accounting and statistics data require an association variable, for example data.PUTNP, rather
than just PUTNP. If you specify just PUTNP alone, this will be interpreted as a response variable and will
therefore have the value null.

• Remember that you can run in debug mode by running the MQEV program with the -! flag. This allows
you to step through the code and display variables at each line of your script. See Chapter 18 Debugging on
page 207.

22.1.8 Why does MQEV complain that there are functions missing from my script?
While it is not necessary to have any code in all the functions, MQEV does require you to have all the functions
present in your script file. This mechanism ensures that you have not accidentally misspelt the name of the function
and are unaware that it isn't being called. The provided sample mqev.mqx is a good place to start when writing your
scripts.

22.1.9 Why does my MQEV on z/OS complain that no licence is found
An MQEV licence file for the distributed platforms will not enable an MQEV on z/OS to run. There is a separate
licence for MQEV on z/OS. It will have a product name of “MQEVz”.

22.1.10 Why can't I view my MQEV on z/OS log files in their PDSE while MQEV is
running
If you specify the log path using the -L program parameter and directly specify the PDSE name rather than using a
DD name, there is nowhere to supply a disposition of shared, so the underlying file operations run without it. Use
the MQEVLOG DD name and ensure to code DISP=SHR and you will be able to view old log files in the PDSE while
the MQEV program is running.

22.1.11 Why doesn't my script wait until my system call is finished before
continuing
The system() call can be run in two modes, synchronous and asynchronous. If you omit the second parameter on
the system() call, it will run in asynchronous mode (to retain compatibility with prior versions). If you want your
script to wait until the system() call is finished before continuing, ensure you code const.SYNC in the second
parameter of the system() call.

Page 222

MQEV User Guide – Version 9.4.1

22.1.12 What does “Responses limited as requested” mean ?
A number of commands for MQEV, such as DISPLAY EVENTS, will limit the number of responses they will
return to avoid flooding the requester with answers. By default each command will return up to 100 responses. This
is done for a number of reasons not least of which that returning large numbers of answers is both costly in terms of
processing power but it also makes it hard for the command issuer to 'see the wood from the trees'. It encourages
the user to use filtering such as date range, object name, userid etc to limit the number of responses. Of course there
are times when you want all possible answers, for example you want a history of all events or you are doing some
form of export. In those cases the response limit can be overridden using the MAXRESP attribute on the command.

22.1.13 What does “Source records limited as requested” mean ?
Some of the commands for MQEV, such as the display commands for Events, Accounting and Statistics, will limit
the number of records used from the repository to generate the response. This is done for a variety of reasons. First
of all it prevents accidental consumption of large amounts of CPU. An MQEV repository can contain millions of
records and you might not want to process all of them. Secondly it allows MQEV to process the data more
efficiently since it knows the limit of what is required.

Note that MAXRESP and MAXRECS are related but nonetheless quite different. It is entirely possible, for example, for
a command to use a large MAXRECS value and yet only return a single answer. Consider the command:

 DISPLAY ACCT(*) SUM(TOTAL) ALL

This command may well have thousands of source records from which to draw the response (MAXRECS) but will
only actually send a single reply (MAXRESP) which is the sum total of all the records it found.

The default MAXRECS value is 1,000,000 which should be sufficient for the vast majority of commands. It is
entirely possible that, even in fairly large installations, the repository never actually contains as many as 1,000,00
records. Clearly it depends on the frequency of data collection and the stream retention interval. Consider an
installation which is creating 5,000 events a day (a considerable number) and retains the events themselves for 6
months (a considerable retention period) this would still be 'only' 900,000 records – below the 1,000,000 default.
However, this is one of those 'one size probably doesn't fit all' type situations and, as such, you can change the
default if you wish by changing DEFMAXRECS in the EV objects.

22.1.14 I saw “IBM MQ QMgr is generating bad data in STATCHL messages” in my
MQEV log.
A defect introduced in IBM MQ V9.2.5 resulted in the queue manager field of a Channel Statistics message
containing rubbish data instead of the queue manager name. This rubbish data was also often not even printable
characters. MQEV checks for this bad data and if it is found that the queue manager name is not correct, reports the
message “IBM MQ QMgr is generating bad data in STATCHL messages” on the log once for each run of MQEV
where it is seen. MQEV also corrects the queue manager name in the data it saves.

We hope that IBM will soon produce an APAR for this IBM MQ defect, but in the meantime, the data collected by
MQEV should not contain this troublesome bad data.

This check and correction of the bad data received from IBM MQ can be turned off by setting the environment
variable MQEV_NO_SCQM_FIX. We do not recommend doing this unless the APAR fixing the issue is applied.

Page 223

MQEV User Guide – Version 9.4.1

22.2 Support
We am sorry you are having problems and need support. The first thing you should always do is just to check that
you are using the latest version of the program. Please go to our web site (MQEV) and check the latest build
date. If there really is a problem with the software then there is always a good chance that someone else has found
the problem before you have. So, you can save yourself a lot of time and effort if you make sure you are always on
the latest level of maintenance.

If you can still reproduce the problem on the latest version then please feel free to email us the details of the
problem and we will do our best to help you. Remember that the more complete you make the description of the
problem the better chance we have of solving it. The kind of information you should include in your email is:

 Your full name
 The exact version, including build date, of the MQEV (and MQSCX or MO71 as well if applicable) you are

using.
 The email address and issue date from within your licence file (if you have one)
 The OS platform and version you are using
 A complete description of the problem and how to recreate it. Please include as much detail as possible such as

frequency of occurrence. For example, does the problem happen every time or just occasionally? Are there any
error messages produced by MQEV or IBM MQ at the time of the problem ?

Once you have gathered this information please email it to support@mqgem.com. We shall reply as soon as
possible. Note that priority will be given to customers based on the severity of the problem and the type of licence
held.

Page 224

mailto:support@mqgem.com
https://www.mqgem.com/mqev_download.html

MQEV User Guide – Version 9.4.1

23 Changes made in previous versions
This chapter will give you an idea of the changes that have been made if you have used a previous version.

23.1 Changes made in Version 9.4.0

1. IBM MQ 9.4 Command Level Support
In keeping with the notion that the first two numbers of MQGem products reflect the version of IBM MQ product
they support this MQSCX version is primarily to reflect the new IBM MQ release.

23.2 Changes made in Version 9.3.0

1. Support for IBM MQ Command Levels up to 932
This includes changes to command and configuration events as a result of object changes, and also the enhancement
of Queue Accounting records to include the connection name of a client connected application. This allows
SUM(CONNAME) to be used on DISPLAY ACCTQ.

2. Protection against defective data in Channel Statistics records
A defect introduced into the IBM MQ Queue Manager in V9.2.5 means that Channel Statistics records
have some rubbish data in the queue manager field of the record. MQEV detects this issue and works
around it. See 22.1.14 I saw “IBM MQ QMgr is generating bad data in STATCHL messages” in my MQEV
log. on page 223 for more details.

3. Support for emit format NDJSON
Newline Delimited JSON (NDJSON) is suitable for situations where you have a downstream program
reading the emitted file at the same time as MQEV is writing to it.

23.3 Changes made in Version 9.2.2

1. IBM MQ Command Levels up to 924 supported.

2. Addition of emitters
You can request MQEV emit events, accounting and statistics messages as JSON, CSV or MQSC messages
on a queue, or files. This can be useful if you wish to push events to a centralised store such as Elastic or
Splunk. For more information please see Chapter 8 Emitters on page 48.

3. BUILD added to DISPLAY EV command
MQEV will return the date of the program build.

4. Performance improvements

• The speed of accessing Event, Accounting and Statistics data has been improved when accessing large
numbers of records. In addition MAXRECS control added to the DISPLAY commands

• Housekeeping of strings has been improved to reduce storage usage.

5. Add DEFMAXREC to the EV object
Users can set a default 'maximum number of records to search' on the EV object.
By default this has a value of 1,000,000.

6. Minor changes to the PCF Groups contained in a response message to the PCF equivalent of a
DISPLAY EVENTS command showing a configuration event.
See Error: Reference source not found Error: Reference source not found on page Error: Reference source
not found for more details if you have your own PCF application issuing commands to MQEV.

7. Support added for hexadecimal numbers in expressions and WHERE clause

Page 225

MQEV User Guide – Version 9.4.1

MQSCX expression can now contain numbers such as 0xAB43D

8. Support added for hexadecimal strings in expressions and WHERE clause.
For example:
DISPLAY ACCTMQI(*) WHERE(CONNID EQ 0x'414D51434D514732202020202020202010CAE36001CCCD23') SUM(NONE) ALL

23.4 Changes made in Version 9.2.1

1. IBM MQ Command Levels up to 921 supported.

2. Addition of CMDLEVEL to Accounting and Statistics commands
This will return the IBM MQ Command level of the Queue Manager at the time the record was written.

3. Addition of CHANNEL to DISPLAY ACCTQ command
IBM MQ can now report CHANNEL as part of the Accounting Queue data. This is now stored and can be
displayed in the normal way. Records can also be summed by channel name by using SUM(CHANNEL)

23.5 Changes made in Version 9.2.0

1. The addition of a -k parameter to indicate MQEV is running as an IBM MQ service.
This parameter should be used when running as an IBM MQ service. This mode of execution essentially says that
MQEV should start and end in line with the Queue Manager itself. So, when the Queue Manager ends MQEV will not
attempted any retries. Please see Chapter.11 Running MQEV with your Queue Manager on page 58 for more
information.

2. A new command 'STOP EV' has been added
An administrator can end MQEV at any time by issuing the 'STOP EV' command. Please see Chapter 13.33 STOP
EV on page 171 for a description of this command.

3. New and changed expression functions
◦ valueof()
◦ power()
◦ system() function now has an optional second parameter to determine whether to run synchronously

or asynchronously.

4. z/OS Support
MQEV is now available to run locally on z/OS. To enable this you require a z/OS specific licence. A distributed
platform MQEV licence will not enable MQEV on z/OS to run.

Page 226

MQEV User Guide – Version 9.4.1

24 Migration from a previous version
We always try to ensure that, as each version is shipped, all the features that were working on the previous versions
remain intact. Before installing a new version we always recommend you first backup the contents of your
MQGEM.MQEV.DATA.QUEUE. Please read 3.2 Upgrade on page 15 for more information on backing up your data. If
you do find a problem then please send us a problem report and we will try to fix your issue as soon as possible.

24.1 Migrating from a version prior to Version 9.4.1
Changes made to ADD EVALERT and REMOVE EVALERT
These commands will now check all alert fields rather than just the ones passed on the command. This
means, for example, that to delete an alert you might need to be more exact about what you are trying to
delete. This is to ensure that 'other' alaerts are not deleted or replaced accidentally.

Changes to the STATQ commands
Earlier versions of MQEV mistakenly included fields for the MQCB calls such as
MQG_ACCST_CBS_CREATED. These fields would always return zero since they do not apply to the
command. Since they do not apply they have therefore been removed. It is just possible, although very
unlikely, that you have scripts that mention these fields and there will now fail.

Storing Accounting and Statistics data for MQEV itself
Previous versions of MQEV would store Accounting and Statistics data for MQEV itself which can
potentially obfuscate the actual messaging which is occurring. Version 9.4.1 will now, by default, discard
any Accounting and Statistics data received about MQEV itself. This behaviour can be changed by setting
the ACCTSELF parameter of the EV object with the ALTER EV command.

24.2 Migrating from a version prior to Version 9.2.2
The response to a DISPLAY EVENTS command showing a configuration event has changed slightly. The change
affects the following set of attributes in the response.

Field Name PCF constant MQSC name

EventUserId
EventSecurityId
EventOrigin
EventAccountingToken
EventIdentityData
EventApplType
EventApplName
EventApplOrigin

MQCACF_EVENT_USER_ID
MQBACF_EVENT_SECURITY_ID
MQIACF_EVENT_ORIGIN
MQBACF_EVENT_ACCOUNTING_TOKEN
MQCACF_EVENT_APPL_IDENTITY
MQIACF_EVENT_APPL_TYPE
MQCACF_EVENT_APPL_NAME
MQCACF_EVENT_APPL_ORIGIN

EVENTUSER
EVSID
EVORIGIN
EVACCTTK
EVAPPLID
EVAPPLTYPE
EVAPPLNAME
EVAPPLORIG

If you were issuing a PCF command to do this, these fields were previously returned in the group
MQG_GROUP_BEFORE if the event was a configuration change event, and not in any group for a create, delete or
refresh configuration event.

In V9.2.2 these fields are now always returned in the group MQGACF_COMMAND_CONTEXT matching what happens
with a command event. The MO71 product issues a PCF command and already handles this difference.

If you were issuing an MQSC command to display event details, you will now notice a CMDCTX: label before these
fields and then the BEFORE: label after these fields as shown in the (trimmed) example below.

Page 227

MQEV User Guide – Version 9.4.1

EVQMGR(MQG1) EVENTS($EVENTS) EVTIME(2021-08-17 18:08:40 (Local))
EVREASON(CFGCHGOBJ) EVTYPE(CONFIG) EVUSERID(mqgemusr) EVOBJNAME(APPL.QLOCAL)
EVOBJTYPE(QUEUE) EVENTID(00000002) CFHCMD(43) CFHREASON(2368)
SUMMARY(Config - Change Object - Queue:APPL.QLOCAL - CLWLUSEQ[QMGR -> LOCAL])
CMDCTX:
EVENTUSER(mqgemusr) EVORIGIN(MSG) EVACCTTK(160105150000001AFA5FFE70975006C3A1...)
EVAPPLID() EVAPPLTYPE(WINDOWSNT) EVAPPLNAME(Qchange) EVAPPLORIG()
BEFORE:
OBJTYPE(QUEUE) QUEUE(APPL.QLOCAL) DESCR() PROCESS()
CLWLPRTY(0) CLWLUSEQ(QMGR) DEFPRESP(SYNC) DEFREADA(NO)
DEFTYPE(PREDEFINED) QTYPE(QLOCAL)
AFTER:
CLWLUSEQ(LOCAL)

Configuration create, delete and refresh events previously did not contain any groups, but now contain the
MQGACF_COMMAND_CONTEXT and one of the MQG_GROUP_BEFORE or MQG_GROUP_AFTER groups. The
Configuration change events contain all three groups.

CMDCTX BEFORE AFTER

Configuration Create Event  

Configuration Change Event   

Configuration Delete Event  

Configuration Refresh Event  

In MQSCX scripts, you can still address all the response variables by name as before. For example, in V9.2.1 and
in the new version, the following command still produces the same result.

print EVACCTTK

If you were using a WHERE clause to directly utilise these fields, the following syntax worked in V9.2.1 and still
works in the new version.

WHERE(EVORIGIN EQ MSG)

However, in V9.2.1, the following syntax also worked to achieve the same thing as the above command, and this
syntax now does not work because this field is no longer considered part of the BEFORE group.

WHERE(BEFORE.EVORIGIN EQ MSG)

Page 228

MQEV User Guide – Version 9.4.1

Appendix A. Expression Operators
Here is a list of the available operators. The majority of them can be used in both the =WHERE() clause and in
normal control language expressions. Where there are restrictions they will be noted against the operator itself.

Operator Meaning Synonyms

Standard WHERE clause operators

EQ Equals =

NE Not Equals <> !=

GE Greater Than or equals >=

LE Less Than or equals <=

GT Greater Than >

LT Less Than <

LK Like – wildcard comparison. (see wildcard note below) ==

NL Not Like – wildcard comparison. (see wildcard note below)

CT Contains

EX Does not contain

CTG Contains generic (see wildcard note below)

EXG Does not contain generic (see wildcard note below)

Additional Operators

= Equals EQ

== Wildcard comparison LIKE

!= Not equals NE <>

<> Not equals NE !=

OR Logical OR |

| Logical OR OR

|| Bitwise OR

AND Logical AND &

& Logical AND AND

&& Bitwise AND

> Greater Than GT

>= Greater Than or Equals GE

< Less Than LT

<= Less Than or Equals LE

- Minus

+ Plus

* Multiply

/ Divide

% Modulus

NOT Logical NOT !

! Logical Not NOT

Page 229

MQEV User Guide – Version 9.4.1

Appendix B. Expression Functions
Here is a list of the available functions the majority of them can be used in both the =WHERE() clause and in
normal control language expressions. Where there are restrictions they will be noted against the function itself.

Function Meaning

ceil(<value>) Returns the highest equivalent integer. The main use of this function is to convert
real numbers to integers. For example ceil(7.3) has the value 8.

date()
date(<time>)
date(<time>,<format string>)

This function takes 0, 1 or 2 parameters.

The <time> parameter is the number of seconds since January 1st 1970.

If no parameters are given the current time is returned in the default format. If just
the time parameter is passed then that time is returned in the default format. If both a
time and format is given then the returned value is the time in a formatted string
according to the following values for the format string:

Format Meaning

H Two digit hour (24 hour clock)

HH Hour (24 hour clock)

h Two digit hour (12 hour clock)

hh Hour (12 hour clock)

M Two digit minutes

S Two digit seconds

d Two digit day of month

dd Day of month including suffix eg.1st, 2nd, 3rd

j Julian day of year (zero based)

J Julian day of year (one based)

m Three character month name eg.Jan,Feb,Mar

mm Two digit month

mmm Full month name eg. January, February,March

P AM/PM

p am/pm

y Four digit year

yy Two digit year

D Three character day of week eg.Mon,Tue,Wed

DD Full character day of week eg. Monday, Tuesday, Wednesday

t Simple time format eg. 18:14:03

\<char> Escape character sequence. eg. \m will print ‘m’

The default format is : H:M d/mm/y eg 17:05 02/04/2014

For example, to print out the current day of the week enter the command:

print date(_time,”DD”)

delvar(<variable> Will delete the given variable. The variable can be a normal user variable, an array
name or an individual element of an array. For example delvar(@a) and
delvar(@a[3,4]) are both valid.

Page 230

MQEV User Guide – Version 9.4.1

eval(<expression>) This function takes a single expression and returns its calculated value. The normal
use of this function is by passing a string which should be evaluations.

For example, eval(“curdepth > 0”)

exists(<variable>) Returns TRUE if the given variable exists and has a defined value. The variable can
be a user or system variable or a user variable array element.

You can not use this function on a response variable.

fclose(<file identifier>) Closes the file given by the file identifier. The file identifier must have been
previously return by fopen()

fgets(<file identifier>,<variable>) Read the next line in the file given by the file identifier.

The function returns:

• the length of the line which is read
• -1 to indicate end of file
• -2 to indicate a file read error

If a line is read then its contents is placed in the given variable. For example:

if (fgets(@hf,@line)>=0)
 print @line
endif

findstr(<string>,<search string>) Returns the offset in the string of the given search string.
The search is case sensitive. If the string is not found 0 is returned.
A search for the NULL string (“”) will always return 1

findstri(<string>,<search string>) Returns the offset in the string of the given search string.
The search is case insensitive. If the string is not found 0 is returned.
A search for the NULL string (“”) will always return 1

floor(<value>) Returns the lowest equivalent integer. The main use of this function is to convert real
numbers to integers. For example floor(7.3) has the value 7.

fopen(<filename>,<mode>) Opens a file and returns the file identifier. A value of -1 is returned if the file is not
opened. The function is essentially just a wrapper around the C runtime fopen()
function so the same modes should work.

Essentially though the modes are:

• “r” - open file for read
• “w”- open file for write - note than any current content will be destroyed
• “a” - open file for append

If the call returns -1 then the system variable _errno can be used to determine the
cause of the failure.

The returned file identifier can be passed to fprint, as the first parameter, to write to
the file.

getkey(<interval>) Returns the next key code typed or 0 if no key is typed within the given interval. The
interval is specified in seconds. Note that it is the code, not the character, that is
returned. For example 'a' =61, 'b'=62, 'c'=63 and so on. The escape key returns 27.

lower(<string>) Return the lower case version of the given string

max(a,b,c,....) Return the maximum of the parameters
There may be any number of parameters or any type.

maxsub(<array variable>)
maxsub(<array variable>,<index>)

Returns the maximum subscript use on the array for the given index. If an index is
not specified the first index, 1, is assumed.

min(a,b,c,....) Return the minimum of the parameters
There may be any number of parameters or any type.

minsub(<array variable>)
minsub(<array variable>,<index>)

Returns the minimum subscript use on the array for the given index. If an index is
not specified the first index, 1, is assumed.

Page 231

MQEV User Guide – Version 9.4.1

mqtime(<date>,<time>) Takes the date and time as strings in the format of:
“2004-06-17” and “20.28.08” or
“20040617” and “202808”
and returns the number of seconds since January 1st 1970

numsubs(<array variable>) Returns the number of subscripts used by the given array.
For example, suppose you define two variables @a[10] = 3 and @a[14,27] = “Hi”
then nusubs(@a) will return 2 since the maximum number of subscripts used by the
variable @a array is 2.

power(x,y) Returns a real number with the value of xy
For example power(2,3) = 8.00 and power(16,0.5) = 4.00

round(<value>) Returns the nearest equivalent integer. The main use of this function is to convert
real numbers to integers. For example round(7.3) has the value 7.

sort(<array>)
sort(<array>,<column>)

The sort function will sort a one or two dimensional array into ascending order.
With two dimensional arrays you can optionally pass a column parameter giving the
column you want to sort by.

sortd(<array>)
sortd(<array>,<column>)

A sort function just like 'sort()' above but it sorts in descending order.

str(<value>) Returns the string representation of the value. The main use of this function is to be
able to concatenate strings with numbers since without the function the strings are
coerced into numbers. For example “Hi”+1 has the value 3 since the length the of
string “Hi” is 2. However, “Hi” + str(1) is “Hi1”.

strlen(<string>) Returns the length of the given string

strreplace(<string>,<old>,<new>) Returns a string where all the occurrences of substring <old> are replaced with
substring <new> in the string <string>.

For example strreplace(“Q.TST”,”.TST”,”.PRD”) has the result of “Q.PRD”.

Passing an empty <old> substring will return <string> as the result.
Passing an empty <new> substring will effectively just delete occurrences of <old>.

substr(<string>,<offset>,<length> Returns the substring for the given length at the given offset. The first character of a
string has an offset of 1. If the length parameter is greater than the available number
of characters then the returned string is shortened accordingly.

sqrt(<number>) Return the square root of the given parameter as a real number

system(<command>)
system(<command>,<options>)

This function takes 1 or 2 parameters.

Will invoke the system with the given command string. This is used to start other
programs. For example:

'q -oLOG -M"event.summary"'

could be used to send an MQ message containing the event summary string, to a
logging queue.

The options provided in the second parameter can be:

Option Meaning

const.SYNC The command is run synchronously and control does not return to
the script until the command completes.

const.ASYNC The command is run asynchronously and control is immediately
returned to the script, while the command continues.

If the second parameter is not specified, the command is run asynchronously.

For more information about using the system() function, see 16.1 Invoking other
programs from your script on page 179.

Page 232

MQEV User Guide – Version 9.4.1

upper(<string>) Return the upper case version of the given string

valueof(<string>,<string>) A function which will parse a set of fields of the format “...field1(value)...” and
return the value associated with that field. The returned value is always a string
regardless of its contents. This can be useful for processing parameters to the
program or indeed parsing the response from the queue manager such as:

valueof(“curdepth”, _lastresp)

If any value is itself contained in quotes then these quotes will be stripped from the
returned value.

If you need to convert a returned string into an integer then you can use the function
eval(). For example eval("123") has the value 123. Of course eval() can take
any expression so you can pass any valid expression this way.

To determine whether a value has been returned at all you can use the function
exists().

For example, suppose you had the following string variable :

@s = "a(Hello) b(123) c() d('another')"

The the result of the of the function is as follows:

valueof("a",@s) Has the value “Hello”

valueof("b",@s) Has the value “123”
Note that this is a string, not a number.

valueof("c",@s) Has the value “”

valueof("d”,@s) Has the value “another”
Note that the single quotes are stripped.

valueof("x",@s) Is <Not Set>

wait(<number>) Waits the given number of seconds before returning. The function returns TRUE.

Page 233

MQEV User Guide – Version 9.4.1

Appendix C. Variable Names
A variable name field must conform to the following rules.

• Names are case insensitive
• Names must not start with a numeric field
• Names may only valid characters, where valid characters are any of:

◦ Alphanumeric characters
◦ Underscore (_)
◦ Period (.)

Page 234

MQEV User Guide – Version 9.4.1

Appendix D. Event Reasons
Here is the full list of event reasons which is used by the DISPLAY EVENTS() command Those highlighted will
return all the event reasons listed below them.

MQSC Value Meaning PCF Constant

AUTHOR Any authority event MQG_EVENT_REASON_AUTH

AUTCON Connection not authorised MQG_EVENT_REASON_AUTH_CONN_NOT_AUTH

AUTSYSCON System connection not authorised MQG_EVENT_REASON_AUTH_SYS_CONN_NOT_AUTH

AUTCSP CSP not authorised MQG_EVENT_REASON_AUTH_CSP_NOT_AUTH

AUTOPEN Open not authorised MQG_EVENT_REASON_AUTH_OPEN_NOT_AUTH

AUTCLOSE Close not authorised MQG_EVENT_REASON_AUTH_CLOSE_NOT_AUTH

AUTCMD Command not authorised MQG_EVENT_REASON_AUTH_CMD_NOT_AUTH

AUTSUB Subscription not authorised MQG_EVENT_REASON_AUTH_SUB_NOT_AUTH

AUTSUBDST Subscription Destination not authorised MQG_EVENT_REASON_AUTH_SUB_DEST_NOT_AUTH

CHANNEL Any channel event MQG_EVENT_REASON_CHANNEL

CHLACT Channel activated MQG_EVENT_REASON_CHANNEL_ACTIVATED

CHLADEFERR Channel auto-define error MQG_EVENT_REASON_CHANNEL_AUTO_DEF_ERROR

CHLADEFOK Channel auto-defined OK MQG_EVENT_REASON_CHANNEL_AUTO_DEF_OK

CHLBLK Channel blocked MQG_EVENT_REASON_CHANNEL_BLOCKED

CHLCONV Channel conversion error MQG_EVENT_REASON_CHANNEL_CONV_ERROR

CHLNOTACT Channel not activated MQG_EVENT_REASON_CHANNEL_NOT_ACTIVATED

CHLNOTAVL Channel not available MQG_EVENT_REASON_CHANNEL_NOT_AVAILABLE

CHLMAXACT Channel Max Active MQG_EVENT_REASON_CHANNEL_MAX_ACTIVE

CHLMAXCHL Channel Max Channels MQG_EVENT_REASON_CHANNEL_MAX_CHANNELS

CHLMAXINST Channel Max Instances MQG_EVENT_REASON_CHANNEL_MAX_INST

CHLMAXINSTC Channel Max Instances Client MQG_EVENT_REASON_CHANNEL_MAX_INSTC

CHLSTR Channel started MQG_EVENT_REASON_CHANNEL_STARTED

CHLSTP Channel stopped MQG_EVENT_REASON_CHANNEL_STOPPED

CHLSTPU Channel stopped by user MQG_EVENT_REASON_CHANNEL_STOPPED_BY_USER

CHLBLKWRN Channel blocked warning MQG_EVENT_REASON_CHANNEL_BLOCKED_WARNING

CHLBLKADDR Channel Blocked Address MQG_EVENT_REASON_CHANNEL_BLOCKED_ADDRESS

CHLBLKUSER Channel Blocked User MQG_EVENT_REASON_CHANNEL_BLOCKED_USER

CHLBLKNOACC Channel Blocked No Access MQG_EVENT_REASON_CHANNEL_BLOCKED_NOACCESS

CHLBKLWADDR Channel Blocked Warning Address MQG_EVENT_REASON_CHANNEL_WBLOCKED_ADDRESS

CHLBLKWUSER Channel Blocked Warning User MQG_EVENT_REASON_CHANNEL_WBLOCKED_USER

CHLBLKWNOACC Channel Blocked Warning No Access MQG_EVENT_REASON_CHANNEL_WBLOCKED_NOACCESS

COMMAND Any command event MQG_EVENT_REASON_CMD

CMDARCLOG Archive Log MQG_EVENT_REASON_CMD_ARCHIVE_LOG

CMDBCKCF Backup CF Struc MQG_EVENT_REASON_CMD_BACKUP_CF_STRUC

CMDCHGAI Change Auth Info MQG_EVENT_REASON_CMD_CHANGE_AUTH_INFO

Page 235

MQEV User Guide – Version 9.4.1

MQSC Value Meaning PCF Constant

CMDCHGBP Change Buffer Pool MQG_EVENT_REASON_CMD_CHANGE_BUFFER_POOL

CMDCHGCF Change CF Struc MQG_EVENT_REASON_CMD_CHANGE_CF_STRUC

CMDCHGCHL Change Channel MQG_EVENT_REASON_CMD_CHANGE_CHANNEL

CMDCHGCI Change Comm Info MQG_EVENT_REASON_CMD_CHANGE_COMM_INFO

CMDCHGLSTR Change Listener MQG_EVENT_REASON_CMD_CHANGE_LISTENER

CMDCHGNL Change Namelist MQG_EVENT_REASON_CMD_CHANGE_NAMELIST

CMDCHGPS Change Page Set MQG_EVENT_REASON_CMD_CHANGE_PAGE_SET

CMDCHGPRC Change Process MQG_EVENT_REASON_CMD_CHANGE_PROCESS

CMDCHGQ Change Queue MQG_EVENT_REASON_CMD_CHANGE_Q

CMDCHGQMGR Change Queue Manager MQG_EVENT_REASON_CMD_CHANGE_Q_MGR

CMDCHGSEC Change Security MQG_EVENT_REASON_CMD_CHANGE_SECURITY

CMDCHGSVC Change Service Object MQG_EVENT_REASON_CMD_CHANGE_SERVICE

CMDCHGSTGC Change Storage Class MQG_EVENT_REASON_CMD_CHANGE_STG_CLASS

CMDCHGSUB Change Subscription MQG_EVENT_REASON_CMD_CHANGE_SUBSCRIPTION

CMDCHGTOP Change Topic MQG_EVENT_REASON_CMD_CHANGE_TOPIC

CMDCHGTRC Change Trace MQG_EVENT_REASON_CMD_CHANGE_TRACE

CMDCLRQ Clear Queue MQG_EVENT_REASON_CMD_CLEAR_Q

CMDCLRTOPS Clear Topic String MQG_EVENT_REASON_CMD_CLEAR_TOPIC_STRING

CMDCRTAI Create Auth Info MQG_EVENT_REASON_CMD_CREATE_AUTH_INFO

CMDCRTBP Create Buffer Pool MQG_EVENT_REASON_CMD_CREATE_BUFFER_POOL

CMDCRTCF Create CF Struc MQG_EVENT_REASON_CMD_CREATE_CF_STRUC

CMDCRTCHL Create Channel MQG_EVENT_REASON_CMD_CREATE_CHANNEL

CMDCRTCI Create Comm Info MQG_EVENT_REASON_CMD_CREATE_COMM_INFO

CMDCRTLSTR Create Listener MQG_EVENT_REASON_CMD_CREATE_LISTENER

CMDCRTNL Create Namelist MQG_EVENT_REASON_CMD_CREATE_NAMELIST

CMDCRTPS Create Page Set MQG_EVENT_REASON_CMD_CREATE_PAGE_SET

CMDCRTPRC Create Process MQG_EVENT_REASON_CMD_CREATE_PROCESS

CMDCRTQ Create Queue MQG_EVENT_REASON_CMD_CREATE_Q

CMDCRTSVC Create Service Object MQG_EVENT_REASON_CMD_CREATE_SERVICE

CMDCRTSTGC Create Storage Class MQG_EVENT_REASON_CMD_CREATE_STG_CLASS

CMDCRTSUB Create Subscription MQG_EVENT_REASON_CMD_CREATE_SUBSCRIPTION

CMDCRTTOP Create Topic MQG_EVENT_REASON_CMD_CREATE_TOPIC

CMDDLTAI Delete Auth Info MQG_EVENT_REASON_CMD_DELETE_AUTH_INFO

CMDDLTCF Delete CF Struc MQG_EVENT_REASON_CMD_DELETE_CF_STRUC

CMDDLTCHL Delete Channel MQG_EVENT_REASON_CMD_DELETE_CHANNEL

CMDDLTCI Delete Comm Info MQG_EVENT_REASON_CMD_DELETE_COMM_INFO

CMDDLTLSTR Delete Listener MQG_EVENT_REASON_CMD_DELETE_LISTENER

CMDDLTNL Delete Namelist MQG_EVENT_REASON_CMD_DELETE_NAMELIST

CMDDLTPS Delete PageSet MQG_EVENT_REASON_CMD_DELETE_PAGE_SET

Page 236

MQEV User Guide – Version 9.4.1

MQSC Value Meaning PCF Constant

CMDDLTPRC Delete Process MQG_EVENT_REASON_CMD_DELETE_PROCESS

CMDDLTQ Delete Queue MQG_EVENT_REASON_CMD_DELETE_Q

CMDDLTSVC Delete Service MQG_EVENT_REASON_CMD_DELETE_SERVICE

CMDDLTSTGC Delete Storage Class MQG_EVENT_REASON_CMD_DELETE_STG_CLASS

CMDDLTSUB Delete Subscription MQG_EVENT_REASON_CMD_DELETE_SUBSCRIPTION

CMDDLTTOP Delete Topic MQG_EVENT_REASON_CMD_DELETE_TOPIC

CMDINQARC Inquire Archive MQG_EVENT_REASON_CMD_INQUIRE_ARCHIVE

CMDINQAI Inquire Auth Info MQG_EVENT_REASON_CMD_INQUIRE_AUTH_INFO

CMDINQCF Inquire CF Struc MQG_EVENT_REASON_CMD_INQUIRE_CF_STRUC

CMDINQCFS Inquire CF Struc Status MQG_EVENT_REASON_CMD_INQUIRE_CF_STRUC_STATUS

CMDINQCHL Inquire Channel MQG_EVENT_REASON_CMD_INQUIRE_CHANNEL

CMDINQCHLI Inquire Channel Initiator MQG_EVENT_REASON_CMD_INQUIRE_CHANNEL_INIT

CMDINQCHS Inquire Channel Status MQG_EVENT_REASON_CMD_INQUIRE_CHANNEL_STATUS

CMQINQCARC Inquire Archive MQG_EVENT_REASON_CMD_INQUIRE_CHLAUTH_RECS

CMDINQCLQM Inquire Cluster Queue Manager MQG_EVENT_REASON_CMD_INQUIRE_CLUSTER_Q_MGR

CMDINQCSVR Inquire Command Server MQG_EVENT_REASON_CMD_INQUIRE_CMD_SERVER

CMDINQCI Inquire Comm Info MQG_EVENT_REASON_CMD_INQUIRE_COMM_INFO

CMDINQCONN Inquire Connection MQG_EVENT_REASON_CMD_INQUIRE_CONNECTION

CMDINQLSTR Inquire Listener MQG_EVENT_REASON_CMD_INQUIRE_LISTENER

CMDINQLOG Inquire Log MQG_EVENT_REASON_CMD_INQUIRE_LOG

CMDINQNL Inquire Namelist MQG_EVENT_REASON_CMD_INQUIRE_NAMELIST

CMDINQPRC Inquire Process MQG_EVENT_REASON_CMD_INQUIRE_PROCESS

CMDINQPSST Inquire Pub/Sub Status MQG_EVENT_REASON_CMD_INQUIRE_PUBSUB_STATUS

CMDINQQ Inquire Queue MQG_EVENT_REASON_CMD_INQUIRE_Q

CMDINQQMGR Inquire Queue Manager MQG_EVENT_REASON_CMD_INQUIRE_Q_MGR

CMDINQQSG Inquire QSG MQG_EVENT_REASON_CMD_INQUIRE_QSG

CMDINQQSTS Inquire Queue Status MQG_EVENT_REASON_CMD_INQUIRE_Q_STATUS

CMDINQSEC Inquire Security MQG_EVENT_REASON_CMD_INQUIRE_SECURITY

CMDINQSVC Inquire Service MQG_EVENT_REASON_CMD_INQUIRE_SERVICE

CMDINQSTGC Inquire Storage Class MQG_EVENT_REASON_CMD_INQUIRE_STG_CLASS

CMQINQSUB Inquire Subscription MQG_EVENT_REASON_CMD_INQUIRE_SUBSCRIPTION

CMDINQSUSD Inquire Subscription Status MQG_EVENT_REASON_CMD_INQUIRE_SUB_STATUS

CMDINQSYS Inquire System MQG_EVENT_REASON_CMD_INQUIRE_SYSTEM

CMDINQTHD Inquire Thread MQG_EVENT_REASON_CMD_INQUIRE_THREAD

CMDINQTOP Inquire Topic MQG_EVENT_REASON_CMD_INQUIRE_TOPIC

CMDINQTOPS Inquire Topic Status MQG_EVENT_REASON_CMD_INQUIRE_TOPIC_STATUS

CMDINQTRC Inquire Trace MQG_EVENT_REASON_CMD_INQUIRE_TRACE

CMDINQUSE Inquire Usage MQG_EVENT_REASON_CMD_INQUIRE_USAGE

CMDMOVQ Move Queue MQG_EVENT_REASON_CMD_MOVE_Q

Page 237

MQEV User Guide – Version 9.4.1

MQSC Value Meaning PCF Constant

CMDPNGCHL Ping Channel MQG_EVENT_REASON_CMD_PING_CHANNEL

CMDRECBSDS Recover BSDS MQG_EVENT_REASON_CMD_RECOVER_BSDS

CMDRECCF Recover CF Struc MQG_EVENT_REASON_CMD_RECOVER_CF_STRUC

CMDREFCLUS Refresh Cluster MQG_EVENT_REASON_CMD_REFRESH_CLUSTER

CMDREFQM Refresh Queue Manager MQG_EVENT_REASON_CMD_REFRESH_Q_MGR

CMDREFSEC Refresh Security MQG_EVENT_REASON_CMD_REFRESH_SECURITY

CMDRESCHL Reset Channel MQG_EVENT_REASON_CMD_RESET_CHANNEL

CMDRESCLUS Reset Cluster MQG_EVENT_REASON_CMD_RESET_CLUSTER

CMDRESQM Reset Queue Manager MQG_EVENT_REASON_CMD_RESET_Q_MGR

CMDRESQST Reset Queue Statistics MQG_EVENT_REASON_CMD_RESET_Q_STATS

CMDRESTPIP Reset TPIPE MQG_EVENT_REASON_CMD_RESET_TPIPE

CMDRLVCHL Resolve Channel MQG_EVENT_REASON_CMD_RESOLVE_CHANNEL

CMDRLVIND Resolve Indoubt MQG_EVENT_REASON_CMD_RESOLVE_INDOUBT

CMDRSMQM Resume Queue Manager MQG_EVENT_REASON_CMD_RESUME_Q_MGR

CMDRSMQMC Resume Queue Manager Cluster MQG_EVENT_REASON_CMD_RESUME_Q_MGR_CLUSTER

CMDREVSEC Reverify Security MQG_EVENT_REASON_CMD_REVERIFY_SECURITY

CMDSETARC Set Archive MQG_EVENT_REASON_CMD_SET_ARCHIVE

CMDSETCA Set Channel Auth MQG_EVENT_REASON_CMD_SET_CHLAUTH_REC

CMDSETLOG Set Log MQG_EVENT_REASON_CMD_SET_LOG

CMDSETSYS Set System MQG_EVENT_REASON_CMD_SET_SYSTEM

CMDSTRCHL Start Channel MQG_EVENT_REASON_CMD_START_CHANNEL

CMDSTRCHLI Start Channel Initiator MQG_EVENT_REASON_CMD_START_CHANNEL_INIT

CMDSTRLSTR Start Listener MQG_EVENT_REASON_CMD_START_CHANNEL_LISTENER

CMDSTRCSVR Start Command Server MQG_EVENT_REASON_CMD_START_CMD_SERVER

CMDSTRSVC Start Service MQG_EVENT_REASON_CMD_START_SERVICE

CMDSTRTRC Start Trace MQG_EVENT_REASON_CMD_START_TRACE

CMDSTPCHL Stop Channel MQG_EVENT_REASON_CMD_STOP_CHANNEL

CMDSTPCHLI Stop Channel Initiator MQG_EVENT_REASON_CMD_STOP_CHANNEL_INIT

CMDSTPLSTR Stop Listener MQG_EVENT_REASON_CMD_STOP_CHANNEL_LISTENER

CMDSTPCSVR Stop Command Server MQG_EVENT_REASON_CMD_STOP_CMD_SERVER

CMDSTPCONN Stop Connection MQG_EVENT_REASON_CMD_STOP_CONNECTION

CMDSTPSVC Stop Service MQG_EVENT_REASON_CMD_STOP_SERVICE

CMDSTPTRC Stop Trace MQG_EVENT_REASON_CMD_STOP_TRACE

CMSSUSQM Suspend Queue Manager MQG_EVENT_REASON_CMD_SUSPEND_Q_MGR

CMDSUSQMCL Suspend Queue Manager Cluster MQG_EVENT_REASON_CMD_SUSPEND_Q_MGR_CLUSTER

CMDUNKNOWN Unknown Command MQG_EVENT_REASON_CMD_UNKNOWN

CONFIG Any configuration Event MQG_EVENT_REASON_CONFIG

CFGCHGOBJ Object change MQG_EVENT_REASON_CONFIG_CHANGE_OBJECT

CFGCRTOBJ Object creation MQG_EVENT_REASON_CONFIG_CREATE_OBJECT

Page 238

MQEV User Guide – Version 9.4.1

MQSC Value Meaning PCF Constant

CFGDLTOBJ Object deletion MQG_EVENT_REASON_CONFIG_DELETE_OBJECT

CFGREFOBJ Object Refresh MQG_EVENT_REASON_CONFIG_REFRESH_OBJECT

INHIBIT Any Inhibit Event MQG_EVENT_REASON_INHIBIT

INHGET Inhibit Get MQG_EVENT_REASON_INHIBIT_GET

INHPUT Inhibit Put MQG_EVENT_REASON_INHIBIT_PUT

LOCAL Any Local Event MQG_EVENT_REASON_LOCAL

LCLABASE Alias Base Error MQG_EVENT_REASON_LOCAL_ALIAS_BASE_ERROR

LCLUNKABS Unknown Alias Base Queue MQG_EVENT_REASON_LOCAL_UNKNOWN_ALIAS_BASE_Q

LCLUNKOBJ Unknown Object Name MQG_EVENT_REASON_LOCAL_UNKNOWN_OBJECT_NAME

LOGGER Any Logger Event MQG_EVENT_REASON_LOGGER

LOGSTS Logger Status MQG_EVENT_REASON_LOGGER_STATUS

PERFM Any Performance Event MQG_EVENT_REASON_PERFM

PERQDPHI Queue High MQG_EVENT_REASON_PERFM_Q_DEPTH_HIGH

PERQDPLO Queue Low MQG_EVENT_REASON_PERFM_Q_DEPTH_LOW

PERQDPFULL Queue Full MQG_EVENT_REASON_PERFM_Q_DEPTH_FULL

PERQSVCHI Queue Service Interval High MQG_EVENT_REASON_PERFM_Q_SVC_INTERVAL_HIGH

PERQSVCOK Queue Service Interval OK MQG_EVENT_REASON_PERFM_Q_SVC_INTERVAL_OK

REMOVE Any Remote Event MQG_EVENT_REASON_REMOTE

REMDXMQTYPE Default Transmission Queue Type Error MQG_EVENT_REASON_REMOTE_DEF_XMITQ_TYPE_ERROR

REMDXMQUSE Default Transmission Queue Usage Error MQG_EVENT_REASON_REMOTE_DEF_XMITQ_USAGE_ERROR

REMQTYPERR Queue Type Error MQG_EVENT_REASON_REMOTE_Q_TYPE_ERROR

REMQNAMERR Remote Queue Name Error MQG_EVENT_REASON_REMOTE_REMOTE_Q_NAME_ERROR

REMXMQTYPE Transmission Queue Type Error MQG_EVENT_REASON_REMOTE_XMIT_Q_TYPE_ERROR

REMXMQUSE Transmission Queue Usage Error MQG_EVENT_REASON_REMOTE_XMIT_Q_USAGE_ERROR

REMUNKDXMTQ Unknown Default Transmission Queue MQG_EVENT_REASON_REMOTE_UNKNOWN_DEF_XMITQ

REMUNKRQM Unknown Remote Queue Manager MQG_EVENT_REASON_REMOTE_UNKNOWN_REMOTE_QMGR

REMUNKXMQ Unknown Transmission Queue MQG_EVENT_REASON_REMOTE_UNKNOWN_XMIT_Q

SSL Any SSL Event MQG_EVENT_REASON_SSL

SSLERROR SSL Error MQG_EVENT_REASON_SSL_ERROR

SSLWARN SSL Warning MQG_EVENT_REASON_SSL_WARNING

SSLERRHSK SSL Handshake Error MQG_EVENT_REASON_SSL_HANDSHAKE_ERROR

SSLERRCIPH SSL Cipher Spec Error MQG_EVENT_REASON_SSL_CIPHER_SPEC_ERROR

SSLERRPEER SSL Peer Name Error MQG_EVENT_REASON_SSL_PEER_NAME_ERROR

SSLERRCAUT SSL Client Auth Error MQG_EVENT_REASON_SSL_CLIENT_AUTH_ERROR

STRSTP Any Start/Stop Event MQG_EVENT_REASON_STRSTP

SSTPQMA Queue Manager Active MQG_EVENT_REASON_STRSTP_QMGR_ACTIVE

SSTPQMNA Queue Manager Not Active MQG_EVENT_REASON_STRSTP_QMGR_NOT_ACTIVE

IMSBR Any IMS Bridge Event MQG_EVENT_REASON_BRIDGE

IMSBRSTR Bridge started MQG_EVENT_REASON_BRIDGE_STARTED

Page 239

MQEV User Guide – Version 9.4.1

MQSC Value Meaning PCF Constant

IMSBRSTP Bridge stopped MQG_EVENT_REASON_BRIDGE_STOPPED

UNKNOWN Event Unknown37 MQG_EVENT_REASON_UNKNOWN

37 This should not happen. If you see this response please ensure that you are using the latest version of MQEV. If you are
using the latest version and you still get this response then please let us know and we will look into the issue.

Page 240

End of document

MQGem Software Limited
www.mqgem.com

http://www.mqgem.com/

	Notices
	Table of Contents
	Main changes from previous version
	1 Introduction
	1.1 Uses
	1.2 Concepts
	1.2.1 Event Queues
	1.2.2 Command Queue
	1.2.3 Persistence Layer
	1.2.3.1 The Persistence Queue

	1.2.4 Compression
	1.2.5 Event Storm Detection
	1.2.6 Script Processor

	1.3 Feedback

	2 Licensing
	2.1 Licence File Location
	2.1.1 When running MQEV in z/OS UNIX
	2.1.2 When running MQEV interactively in TSO
	2.1.3 When running MQEV from JCL

	2.2 Multiple licences
	2.3 Licence Renewal
	2.4 Changing your licence file

	3 Getting Started
	3.1 Installation
	3.1.1 Windows
	3.1.2 Unix
	3.1.3 z/OS
	3.1.3.1 z/OS Unix Installation

	3.1.4 MQEV Administration

	3.2 Upgrade
	3.3 Configuration
	3.3.1 Queues
	3.3.2 Script functions
	3.3.3 Events
	3.3.4 Statistics
	3.3.5 Accounting

	3.4 Running the program
	3.5 Displaying MQEV in a command line (MQSCX)
	3.6 Displaying MQEV in a GUI (MO71)
	3.7 Testing with other events

	4 Parameters
	5 Streams
	5.1 Directing events to a stream
	5.2 Directing accounting and statistics messages
	5.3 Auto-generated streams

	6 Aggregation
	6.1 Purpose
	6.2 Concept
	6.2.1 Interval
	6.2.2 'Same thing'
	6.2.3 Combination

	6.3 Multiple Streams
	6.4 Displaying
	6.5 Emitters
	6.6 Operation
	6.6.1 Absorption
	6.6.2 Storage

	7 Collation
	7.1 TITLE and TITLEIDX
	7.2 Types
	7.3 Use examples

	8 Emitters
	8.1 Stream configuration
	8.2 Emitter Code page
	8.3 Emitter Formats
	8.3.1 CSV
	8.3.2 JSON
	8.3.3 NDJSON
	8.3.3.1 Unique ID

	8.3.4 MQSC

	8.4 Emitter File Name
	8.4.1 Emitter Filename Inserts

	8.5 GetPost Application
	8.5.1 Parameters
	8.5.2 Error processing
	8.5.3 Transactions
	8.5.4 Using Triggering

	9 Logging
	10 Where Clause()
	10.1.1 Attribute presence

	11 Running MQEV with your Queue Manager
	11.1 Running MQEV as an IBM MQ Service (Distributed platforms)
	11.1.1 When running on the event Queue Manager
	11.1.2 When running using a State Queue Manager

	11.2 Running MQEV in batch (z/OS only)
	11.2.1 DD name MQGEML
	11.2.2 DD name MQEVMQX
	11.2.3 DD name MQEVLOG

	11.3 Running MQEV as a Started Task (z/OS only)
	11.4 Stopping MQEV using the MVS STOP command

	12 Returned Interval Times
	12.1 SUM(NONE)
	12.2 SUM(something) with no INTVL
	12.3 SUM(something) and INTVL(something)
	12.3.1 Graphing
	12.3.1.1 GAPFILL
	12.3.1.2 ZEROVALS

	13 Command Reference
	13.1 Programmable command format commands and responses
	13.2 ADD EVALERT
	13.2.1 Syntax diagram for ADD EVALERT
	13.2.2 Parameter descriptions for ADD EVALERT

	13.3 ADD EVQ
	13.3.1 Syntax diagram for ADD EVQ
	13.3.2 Parameter descriptions for ADD EVQ

	13.4 ALTER EV
	13.4.1 Syntax diagram for ALTER EV
	13.4.2 Parameter descriptions for ALTER EV

	13.5 ALTER EVEMIT
	13.5.1 Syntax diagram for ALTER EVEMIT
	13.5.2 Parameter descriptions for ALTER EVEMIT

	13.6 ALTER EVQ
	13.6.1 Syntax diagram for ALTER EVQ
	13.6.2 Parameter descriptions for ALTER EVQ

	13.7 ALTER EVSTREAM
	13.7.1 Syntax diagram for ALTER EVSTREAM
	13.7.2 Parameter descriptions for ALTER EVSTREAM

	13.8 COPY EVSTRMST
	13.8.1 Syntax diagram for COPY EVSTRMST
	13.8.2 Parameter descriptions for ALTER EVSTREAM

	13.9 DEFINE EVEMIT
	13.9.1 Syntax diagram for DEFINE EVEMIT
	13.9.2 Parameter descriptions for DEFINE EVEMIT

	13.10 DEFINE EVSTREAM
	13.10.1 Syntax diagram for DEFINE EVSTREAM
	13.10.2 Parameter descriptions for DEFINE EVSTREAM

	13.11 DELETE EVEMIT
	13.11.1 Syntax diagram for DELETE EVEMIT
	13.11.2 Parameter descriptions for DELETE EVEMIT

	13.12 DELETE EVSTREAM
	13.12.1 Syntax diagram for DELETE EVSTREAM
	13.12.2 Parameter descriptions for DELETE EVSTREAM

	13.13 DISPLAY ACCTMQI
	13.13.1 Syntax diagram for DISPLAY ACCTMQI
	13.13.2 Parameter descriptions for DISPLAY ACCTMQI

	13.14 DISPLAY ACCTQ
	13.14.1 Syntax diagram for DISPLAY ACCTQ
	13.14.2 Parameter descriptions for DISPLAY ACCTQ

	13.15 DISPLAY EV
	13.15.1 Syntax diagram for DISPLAY EV
	13.15.2 Parameter descriptions for DISPLAY EV

	13.16 DISPLAY EVALERT
	13.16.1 Syntax diagram for DISPLAY EVALERT
	13.16.2 Parameter descriptions for DISPLAY EVALERT

	13.17 DISPLAY EVEMIT
	13.17.1 Syntax diagram for DISPLAY EVEMIT
	13.17.2 Parameter descriptions for DISPLAY EVEMIT

	13.18 DISPLAY EVENTS
	13.18.1 Syntax diagram for DISPLAY EVENTS
	13.18.2 Parameter descriptions for DISPLAY EVENTS

	13.19 DISPLAY EVQ
	13.19.1 Syntax diagram for DISPLAY EVQ
	13.19.2 Parameter descriptions for DISPLAY EVQ

	13.20 DISPLAY EVQMGR
	13.20.1 Syntax diagram for DISPLAY EVQMGR
	13.20.2 Parameter descriptions for DISPLAY EVQMGR

	13.21 DISPLAY EVSTREAM
	13.21.1 Syntax diagram for DISPLAY EVSTREAM
	13.21.2 Parameter descriptions for DISPLAY EVSTREAM

	13.22 DISPLAY EVSTRMST
	13.22.1 Syntax diagram for DISPLAY EVSTRMST
	13.22.2 Parameter descriptions for DISPLAY EVSTRMST

	13.23 DISPLAY STATCHL
	13.23.1 Syntax diagram for DISPLAY STATCHL
	13.23.2 Parameter descriptions for DISPLAY STATCHL

	13.24 DISPLAY STATMQI
	13.24.1 Syntax diagram for DISPLAY STATMQI
	13.24.2 Parameter descriptions for DISPLAY STATMQI

	13.25 DISPLAY STATQ
	13.25.1 Syntax diagram for DISPLAY STATQ
	13.25.2 Parameter descriptions for DISPLAY STATQ

	13.26 PURGE EVSTRMST
	13.26.1 Syntax diagram for PURGE EVSTRMST
	13.26.2 Parameter descriptions for PURGE EVSTRMST

	13.27 REMOVE EVALERT
	13.27.1 Syntax diagram for REMOVE EVALERT
	13.27.2 Parameter descriptions for REMOVE EVALERT

	13.28 REMOVE EVQ
	13.28.1 Syntax diagram for REMOVE EVQ
	13.28.2 Parameter descriptions for REMOVE EVQ

	13.29 REMOVE EVQMGR
	13.29.1 Syntax diagram for DISPLAY EVQMGR
	13.29.2 Parameter descriptions for REMOVE EVQMGR

	13.30 RENAME EVSTREAM
	13.30.1 Syntax diagram for RENAME EVSTREAM
	13.30.2 Parameter descriptions for RENAME EVSTREAM

	13.31 RESET EV
	13.31.1 Syntax diagram for RESET EV
	13.31.2 Parameter descriptions for RESET EV

	13.32 RESUME EVQ
	13.32.1 Syntax diagram for RESUME EVQ
	13.32.2 Parameter descriptions for RESUME EVQ

	13.33 STOP EV
	13.33.1 Syntax diagram for STOP EV
	13.33.2 Parameter descriptions for STOP EV

	13.34 SUSPEND EVQ
	13.34.1 Syntax diagram for SUSPEND EVQ
	13.34.2 Parameter descriptions for SUSPEND EVQ

	14 Alerts
	14.1 Alert Definition
	14.2 Alert Uses
	14.2.1 User Alert
	14.2.2 User Reminder
	14.2.3 Script Reminder

	14.3 Alert Retention
	14.4 Maximum Number of Alerts
	14.5 Alert Publication
	14.5.1 Publication Message Format

	15 Event Storms
	15.1 Storm Alert

	16 MQEV Scripting
	16.1 Invoking other programs from your script
	16.1.1 Synchronously
	16.1.2 Asynchronously

	17 Script Control Language
	17.1 Getting started with the control language
	17.2 Variables
	17.2.1 Association variables
	17.2.2 User Variables
	17.2.3 Arrays
	17.2.4 System Variables
	17.2.5 Response Variables

	17.3 Variable Scope and Stack Frames
	17.4 Expressions
	17.4.1 Data Types
	17.4.2 Coercion
	17.4.3 String Concatenation

	17.5 Inserting code fragments
	17.6 Substitution commands
	17.6.1 Functions

	17.7 General syntax
	17.7.1 Continuation
	17.7.2 Comments

	17.8 Statements
	17.8.1 break
	17.8.2 continue
	17.8.3 foreach(....) clause
	17.8.4 foritem(....) clause
	17.8.5 fprint statement
	17.8.6 goto
	17.8.7 if(....) clause
	17.8.8 label
	17.8.9 leave
	17.8.10 print statement
	17.8.11 return
	17.8.12 var
	17.8.13 wait() statement
	17.8.14 while(...) clause

	17.9 Functions
	17.9.1 Function Basics
	17.9.2 Function Invocation
	17.9.2.1 Recursion
	17.9.2.2 Mutual Recursion

	17.9.3 Dynamic Execution
	17.9.4 Comments

	18 Debugging
	18.1 Debugger
	18.1.1 <Enter>
	18.1.2 print
	18.1.3 eval
	18.1.4 Assignment
	18.1.5 list (short-form 'l')
	18.1.6 llist (short-form 'll')
	18.1.7 where
	18.1.8 Breakpoints
	18.1.8.1 bl
	18.1.8.2 bp
	18.1.8.3 bc

	18.1.9 end
	18.1.10 run
	18.1.11 runout
	18.1.12 sf
	18.1.13 Help (short-form ?)
	18.1.14 Command alteration

	19 Data Management
	20 Operational Characteristics
	20.1 Message Consolidation
	20.2 Message Retention
	20.3 Time zones
	20.4 Original Event Data
	20.4.1 Daisy chaining

	20.5 IBM MQ Configuration

	21 Security
	21.1 Authorities needed by the MQEV program
	21.1.1 Example security commands for Distributed Platforms
	21.1.2 Example security commands for z/OS (using RACF)

	21.2 Authorities needed by users of MQEV
	21.2.1 Example security commands for Distributed Platforms
	21.2.2 Example security commands for z/OS (using RACF)

	22 Trouble Shooting
	22.1 Frequently Asked Questions
	22.1.1 My MQEV runs in the background, how do I know what it's doing?
	22.1.2 Why does MQEV not delete all my log files?
	22.1.3 Why does MQSCX complain that my commands are invalid?
	22.1.4 Why do the MQEV menus not appear in MO71?
	22.1.5 Why does my alert disappear?
	22.1.6 Why can't I see the events I know have been generated?
	22.1.7 Why don't my scripts work?
	22.1.8 Why does MQEV complain that there are functions missing from my script?
	22.1.9 Why does my MQEV on z/OS complain that no licence is found
	22.1.10 Why can't I view my MQEV on z/OS log files in their PDSE while MQEV is running
	22.1.11 Why doesn't my script wait until my system call is finished before continuing
	22.1.12 What does “Responses limited as requested” mean ?
	22.1.13 What does “Source records limited as requested” mean ?
	22.1.14 I saw “IBM MQ QMgr is generating bad data in STATCHL messages” in my MQEV log.

	22.2 Support

	23 Changes made in previous versions
	23.1 Changes made in Version 9.4.0
	23.2 Changes made in Version 9.3.0
	23.3 Changes made in Version 9.2.2
	23.4 Changes made in Version 9.2.1
	23.5 Changes made in Version 9.2.0

	24 Migration from a previous version
	24.1 Migrating from a version prior to Version 9.4.1
	24.2 Migrating from a version prior to Version 9.2.2

	Appendix A. Expression Operators
	Appendix B. Expression Functions
	Appendix C. Variable Names
	Appendix D. Event Reasons

